login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form 4x^2+9xy-11y^2.
2

%I #17 Sep 10 2016 13:23:56

%S 0,2,4,8,11,13,16,17,18,22,23,26,29,31,32,34,36,44,46,50,52,58,59,62,

%T 64,68,72,73,79,88,89,92,98,99,100,104,116,117,118,121,122,124,128,

%U 134,136,137,139,143,144,146,153,158,162,169,173,176,178,184,187,196,198,199,200,207,208,211,221,223,226,232,234,236,239,242,244,248,253,256,261,268

%N Numbers of the form 4x^2+9xy-11y^2.

%C Discriminant 257.

%C 16*a(n) has the form z^2 - 257*y^2, where z = 8*x+9*y. [_Bruno Berselli_, Jun 20 2014]

%H R. J. Mathar, <a href="/A243181/b243181.txt">Table of n, a(n) for n = 1..2180</a>

%H N. J. A. Sloane et al., <a href="https://oeis.org/wiki/Binary_Quadratic_Forms_and_OEIS">Binary Quadratic Forms and OEIS</a> (Index to related sequences, programs, references)

%t maxTerm = 300; m0 = 10; dm = 10; Clear[f]; f[m_] := f[m] = Table[4*x^2 + 9 x*y - 11*y^2 , {x, -m, m}, {y, -m, m}] // Flatten // Union // Select[#, 0 <= # <= maxTerm&]&; f[m0]; f[m = m0]; While[f[m] != f[m - dm], m = m + dm]; f[m] (* _Jean-François Alcover_, Jun 04 2014 *) (* Brute force search, so not guaranteed to find all solutions, I believe. - _N. J. A. Sloane_, Jun 05 2014 *)

%t Reap[For[n = 0, n <= 30, n++,

%t If[Reduce[4*x^2 + 9*x*y - 11*y^2 == n, {x, y}, Integers] =!= False, Sow[n]]]][[2, 1]] (* Better program, not brute force, but slow. Confirms the terms up through 29. - _N. J. A. Sloane_, Jun 05 2014 *)

%Y Primes: A141168.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Jun 02 2014