login
A078649
Numbers n such that A000002(n)=A000002(n+1) where A000002 is the Kolakoski sequence.
24
2, 4, 8, 11, 13, 16, 18, 22, 26, 28, 31, 35, 38, 40, 44, 48, 51, 53, 56, 58, 62, 65, 67, 70, 74, 78, 80, 83, 85, 89, 92, 94, 97, 99, 103, 107, 110, 112, 115, 119, 121, 124, 126, 130, 133, 135, 138, 140, 144, 148, 150, 153, 157, 160, 162, 165, 167, 171, 175, 178, 180
OFFSET
1,1
COMMENTS
Complement sequence of A054353. - Benoit Cloitre, Feb 07 2009
This sequence is the union of A074262 and A074263. - Nathaniel Johnston, May 02 2011
A054354(a(n)-1) = 0. - Reinhard Zumkeller, Aug 03 2013
This is a subsequence of A216345. In particular, this consists of A216345(i) such that A000002(i) = A216345(i+1)-A216345(i) = 2. A013948 is the sequence of all such i. - Danny Rorabaugh, Mar 13 2015
LINKS
FORMULA
a(n) is probably asymptotic to 3*n.
a(n) = A216345(A013948(n)). - Danny Rorabaugh, Mar 13 2015
MAPLE
isA078649 := proc(n)
if A000002(n) = A000002(n+1) then
true;
else
false;
end if;
end proc:
A078649 := proc(n)
option remember;
if n = 1 then
2;
else
for a from procname(n-1)+1 do
if isA078649(a) then
return a;
end if;
end do:
end if;
end proc:
seq(A078649(n), n=1..50) ; # R. J. Mathar, Nov 15 2014
MATHEMATICA
a2 = {1, 2, 2}; Do[ a2 = Join[a2, {1+Mod[n-1, 2]}], {n, 3, 80}, {a2[[n]]}]; a3 = Accumulate[a2]; Complement[ Range[ Last[a3]], a3] (* Jean-François Alcover, Jun 18 2013 *)
PROG
(Haskell)
a078649 n = a078649_list !! (n-1)
a078649_list = map (+ 1) $ filter ((== 0) . a054354) [1..]
-- Reinhard Zumkeller, Aug 03 2013
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Benoit Cloitre, Dec 14 2002
STATUS
approved