Asymptotic of sequences A244820, A244821 and A244822

(Václav KotěŠovec, July 11 2014)

In the OEIS (On-Line Encyclopedia of Integer Sequences) published Paul D. Hanna 6.7.2014 sequences A244820, A244821 and A244822, which can be generalized as

$$
a_{n}=\sum_{k=0}^{n} p^{k(n-k)} k^{n-k}\binom{n}{k}
$$

where p is integer >1.

Main result:

$$
\sum_{k=0}^{n} p^{k(n-k)} k^{n-k}\binom{n}{k} \sim \frac{1}{\sqrt{\pi}} * e^{\frac{(1+\log (2))^{2}}{4 \log (p)}} * 2^{\frac{n+1}{2}} * n^{\frac{n-1}{2}+\frac{\log (n)}{4 \log (p)}-\frac{1+\log (2)}{2 \log (p)}} * p^{\frac{n^{2}}{4}} * \sum_{m=-\infty}^{\infty} p^{-\left(m-\operatorname{frac}\left(\frac{n}{2}-\frac{\log \left(\frac{n}{2}\right)-1}{2 \log (p)}\right)\right)^{2}}
$$

where "frac" is the fractional part.

$$
\sum_{m=-\infty}^{\infty} p^{-\left(m+\frac{1}{2}\right)^{2}} \leq \sum_{m=-\infty}^{\infty} p^{-\left(m-\operatorname{frac}\left(\frac{n}{2}-\frac{\log \left(\frac{n}{2}\right)-1}{2 \log (p)}\right)\right)^{2}} \leq \sum_{m=-\infty}^{\infty} p^{-m^{2}}
$$

For first orientation here is graph for $p=2$ in the logarithmical scale:

$$
\begin{aligned}
& \mathrm{n}=1000 \text {; } \\
& \text { ListPlot }\left[\text { Table } \left[\log \left[\text { Binomial }[\mathrm{n}, \mathrm{k}] * \mathrm{k}^{\wedge}(\mathrm{n}-\mathrm{k}) * 2^{\wedge}(\mathrm{k} *(\mathrm{n}-\mathrm{k}))\right]\right.\right. \text {, } \\
& \{\mathrm{k}, 0, \mathrm{n}\}]]
\end{aligned}
$$

The maximal term is at position near $n / 2$, but not exactly at $n / 2$.

ListPlot[

Table $\left[\left\{k\right.\right.$, $\left.\log \left[B i n o m i a l[n, k] * k \wedge(n-k) * 2^{\wedge}(k *(n-k))\right]\right\}$,
$\{\mathrm{k}, \mathrm{n} / 2-10, \mathrm{n} / 2+10\}]]$

We find the maximal term with the help of Stirling's formula, derivative must be zero

```
stirling[n_] := n^n/E^n*Sqrt[2*Pi*n];
binom[n_, k_] := stirling[n]/stirling[k]/stirling[n-k];
FullSimplify[D[binom[n, n/2-m] * (n/2-m)^(n/2+m)* * ^^((n/2-m)* (n/2+m)),m]]
-}\frac{1}{(2m+n\mp@subsup{)}{}{3/2}\sqrt{}{\pi}}\mp@subsup{2}{}{\frac{1}{2}-2m}(m+\frac{n}{2}\mp@subsup{)}{}{-m-\frac{n}{2}}\mp@subsup{n}{}{\frac{1}{2}+n}(-2m+n\mp@subsup{)}{}{-\frac{3}{2}+2m}\mp@subsup{p}{}{\frac{1}{4}(-4\mp@subsup{m}{}{2}+\mp@subsup{n}{}{2})}(4(-1+m)m+4mn
    n}+(-4\mp@subsup{m}{}{2}+\mp@subsup{n}{}{2})\operatorname{Log}[m+\frac{n}{2}]-2(4\mp@subsup{m}{}{2}-\mp@subsup{n}{}{2})(\operatorname{Log}[2]-\operatorname{Log}[-2m+n]+m\operatorname{Log}[p])
```

Now we have

```
Limit[
    (4(-1+m)m+4mn+ n}\mp@subsup{\mp@code{N}}{}{2}+(-4\mp@subsup{m}{}{2}+\mp@subsup{n}{}{2})\operatorname{Log}[m+\frac{n}{2}]-2(4\mp@subsup{m}{}{2}-\mp@subsup{n}{}{2})(\operatorname{Log}[2]-\operatorname{Log}[-2m+n]+m\operatorname{Log}[p]))
        n^2/LLOg[n]/.m->c*\operatorname{Log}[n],n->Infinity]
-1+2 c Log[p]
Solve[-1+2 c Log[p] = 0]
{{c->\frac{1}{2 Log[p]}}}
```

and in next step

```
Limit[
    (4(-1+m)m+4mn+\mp@subsup{n}{}{2}+(-4\mp@subsup{m}{}{2}+\mp@subsup{n}{}{2})\operatorname{Log}[m+\frac{n}{2}]-2(4\mp@subsup{m}{}{2}-\mp@subsup{n}{}{2})(\operatorname{Log}[2]-\operatorname{Log}[-2m+n]+m\operatorname{Log}[p]))/
        n^2 /.m->\frac{1}{2 Log[p]}}*\operatorname{Log}[n]+d,n->\mathrm{ Infinity]
1+\operatorname{Log[2] + 2d Log[p]}
Solve [1 + Log[2] + 2 d Log[p] == 0]
{{d}->\frac{-1-\operatorname{Log}[2]}{2\operatorname{Log}[p]}}
```

Maximum of this (real) function is at the point

$$
r \max =\frac{n}{2}-\frac{\log (n)}{2 \log (p)}+\frac{1+\log (2)}{2 \log (p)}=\frac{n}{2}-\frac{\log (n / 2)-1}{2 \log (p)}
$$

Complication is, that this point is (in general) not integer. Maximum term of the sequence is at the integer point nearest this real point.

$$
\begin{aligned}
& \text { if } \operatorname{frac}(r \max) \leq 1 / 2 \text { then } \operatorname{kmax}=\text { floor }(r \max) \\
& \text { if } \operatorname{frac}(\operatorname{rmax})>1 / 2 \text { then } \max =\text { floor }(r \max)+1
\end{aligned}
$$

where "frac" is the fractional part.

Interesting is graph of distribution of fractional parts (example for $p=3$)

$$
\mathrm{p}=3 ; \operatorname{ListPlot}\left[\operatorname{Table}\left[\text { FractionalPart }\left[\mathrm{n} / 2-\frac{\log [n / 2]-1}{2 \log [p]}\right],\{n, 1,1000\}\right]\right]
$$

Value in the (real) maximum is then

$$
a_{r \max }=\left(\frac{n}{2}-\frac{\log (n)}{2 \log (p)}+\frac{1+\log (2)}{2 \log (p)}\right)^{\frac{n}{2}+\frac{\log (n)}{2 \log (p)}-\frac{1+\log (2)}{2 \log (p)}} p^{\left(\frac{n}{2}-\frac{\log (n)}{2 \log (p)}+\frac{1+\log (2)}{2 \log (p)}\right)\left(\frac{n}{2}+\frac{\log (n)}{2 \log (p)}-\frac{1+\log (2)}{2 \log (p)}\right)}\left(\frac{n}{2}-\frac{\log (n)}{2 \log (p)}+\frac{1+\log (2)}{2 \log (p)}\right)
$$

For purpose of asymptotic this expression can be simplified

$$
\begin{gathered}
\left(\frac{n}{2}-\frac{\log (n)}{2 \log (p)}+\frac{1+\log (2)}{2 \log (p)}\right)^{\frac{n}{2}+\frac{\log (n)}{2 \log (p)}-\frac{1+\log (2)}{2 \log (p)}} \sim e^{\frac{1+\log ^{2}(2)}{2 \log (p)}} 2^{\frac{1}{\log (p)}-\frac{n}{2}} n^{\frac{n \log (p)+\log \left(\frac{n}{4}\right)-2}{2 \log (p)}} \\
p^{\left(\frac{n}{2}-\frac{\log (n)}{2 \log (p)}+\frac{1+\log (2)}{2 \log (p)}\right)\left(\frac{n}{2}+\frac{\log (n)}{2 \log (p)}-\frac{1+\log (2)}{2 \log (p)}\right)} \sim p^{\frac{n^{2}}{4}} 2^{-\frac{1}{2 \log (p)}} e^{-\frac{1+\log ^{2}(2)}{4 \log (p)}} n^{\frac{-\log (n)+2+\log (4)}{4 \log (p)}} \\
\left(\frac{n}{2}-\frac{\log (n)}{2 \log (p)}+\frac{1+\log (2)}{2 \log (p)}\right) \sim\binom{n}{n / 2} \sim \frac{2^{n+\frac{1}{2}}}{\sqrt{\pi n}}
\end{gathered}
$$

and result is

$$
a_{r \max } \sim \frac{1}{\sqrt{\pi}} * e^{\frac{(1+\log (2))^{2}}{4 \log (p)}} * 2^{\frac{n+1}{2}} * n^{\frac{n-1}{2}+\frac{\log (n)}{4 \log (p)}-\frac{1+\log (2)}{2 \log (p)}} * p^{\frac{n^{2}}{4}}
$$

Checked with Mathematica

$$
\left.\begin{array}{l}
\text { Limit }\left[\operatorname{binom}\left[n, n / 2-\frac{\log [n]}{2 \log [p]}+\frac{1+\log [2]}{2 \log [p]}\right] *\right. \\
\left(n / 2-\frac{\log [n]}{2 \log [p]}+\frac{1+\log [2]}{2 \log [p]}\right) *\left(n / 2+\frac{\log [n]}{2 \log [p]}-\frac{1+\log [2]}{2 \log [p]}\right) * \\
p^{\wedge}\left(\left(n / 2-\frac{\log [n]}{2 \log [p]}+\frac{1+\log [2]}{2 \log [p]}\right) *\left(n / 2+\frac{\log [n]}{2 \log [p]}-\frac{1+\log [2]}{2 \log [p]}\right)\right) / \\
\left(\frac{2^{\frac{1}{2}(1+n)} * n^{\frac{n}{2}+\frac{\log [n]}{4 \log [p]}-\frac{1+\log [2]}{2 \log [p]}-\frac{1}{2}} * e^{\frac{(1+\log [2])^{2}}{4 \log [p]}} p^{\frac{n^{2}}{4}}}{\sqrt{\pi}}\right), n \rightarrow \operatorname{Infinity]}
\end{array}\right) .
$$

Now we find the limit

$$
\lim _{n \rightarrow \infty} \frac{a_{r \max }+m}{a_{r \max }}=p^{-m^{2}}
$$

```
\(\operatorname{Limit}\left[\operatorname{binom}\left[n, n / 2-\frac{\log [n]}{2 \log [p]}+\frac{1+\log [2]}{2 \log [p]}+m\right] / \operatorname{binom}\left[n, n / 2-\frac{\log [n]}{2 \log [p]}+\frac{1+\log [2]}{2 \log [p]}\right]\right.\),
\(n \rightarrow\) Infinity
1
```

$$
\begin{aligned}
& \operatorname{Limit}\left[2^{\wedge}(n+1 / 2) / \operatorname{Sqrt}[P i * n] *\left(n / 2-\frac{\log [n]}{2 \log [p]}+\frac{1+\log [2]}{2 \log [p]}+m\right) \wedge\left(n / 2+\frac{\log [n]}{2 \log [p]}-\frac{1+\log [2]}{2 \log [p]}-m\right) *\right. \\
& p^{\wedge}\left(\left(n / 2-\frac{\log [n]}{2 \log [p]}+\frac{1+\log [2]}{2 \log [p]}+m\right) *\left(n / 2+\frac{\log [n]}{2 \log [p]}-\frac{1+\log [2]}{2 \log [p]}-m\right)\right) / \\
& \left(\frac{2^{\frac{1}{2}(1+n)} * n^{\frac{n}{2}+\frac{\log [n]}{4 \log [p]}-\frac{1+\log [2]}{2 \log [p]}-\frac{1}{2}} * e^{\frac{(1+\log [2])^{2}}{4 \log [p]}} p^{\frac{n^{2}}{4}}}{\sqrt{\pi}}\right), n \rightarrow \operatorname{Infinity]} \\
& p^{-m^{2}}
\end{aligned}
$$

Value in the nearest integer point is then

$$
a_{k \max } \sim a_{r \max } * p^{-(\operatorname{frac}(r \max))^{2}}
$$

or in case $\operatorname{frac}($ rmax $)>1 / 2$

$$
a_{k \max } \sim a_{r \max } * p^{-(1-\operatorname{frac}(r \max))^{2}}
$$

```
p=3;
Show[
    ListPlot[
    ParallelTable[
```



```
        p^}((\textrm{n}/2-\frac{\operatorname{Log}[\textrm{n}/2]-1}{2\operatorname{Log}[\textrm{p}]})*(\textrm{n}-(\textrm{n}/2-\frac{\operatorname{Log}[\textrm{n}/2]-1}{2\operatorname{Log}[\textrm{p}]}))))
```



```
        p^((Floor [n/2 - - Log[n/2]-1}\mp@code{2 Log[p]}])*(n-(Floor[n/2-\frac{\operatorname{Log}[n/2]-1}{2\operatorname{Log}[p]}]))))},{n,1,1000}]]
    ListPlot [Table [{n, p^(FractionalPart [n/2 - 矢 [n/2]-1
    \
```

Note that

$$
\sum_{m=-\infty}^{\infty} p^{-(m-f r a c(r m a x))^{2}}=\sum_{m=-\infty}^{\infty} p^{-(m-(1-f r a c(r m a x)))^{2}}
$$

Contributions of all terms are then

$$
a_{n}=\sum_{k=0}^{n} p^{k(n-k)} k^{n-k}\binom{n}{k} \sim \sum_{m=-\infty}^{\infty} a_{k \max +m} \sim a_{r \max } * \sum_{m=-\infty}^{\infty} p^{-(m-f r a c(r \max))^{2}}
$$

And final result is

$$
\sum_{k=0}^{n} p^{k(n-k)} k^{n-k}\binom{n}{k} \sim \frac{1}{\sqrt{\pi}} * e^{\frac{(1+\log (2))^{2}}{4 \log (p)}} * 2^{\frac{n+1}{2}} * n^{\frac{n-1}{2}+\frac{\log (n)}{4 \log (p)}-\frac{1+\log (2)}{2 \log (p)}} * p^{\frac{n^{2}}{4}} * \sum_{m=-\infty}^{\infty} p^{-\left(m-\operatorname{frac}\left(\frac{n}{2}-\frac{\log \left(\frac{n}{2}\right)-1}{2 \log (p)}\right)\right)^{2}}
$$

Last term is not constant, but is bounded

$$
\text { EllipticTheta }\left[2,0, \frac{1}{p}\right]=\sum_{m=-\infty}^{\infty} p^{-\left(m+\frac{1}{2}\right)^{2}} \leq \sum_{m=-\infty}^{\infty} p^{-\left(m-\operatorname{frac}\left(\frac{n}{2}-\frac{\log \left(\frac{n}{2}\right)-1}{2 \log (p)}\right)\right)^{2}} \leq \sum_{m=-\infty}^{\infty} p^{-m^{2}}=\text { EllipticTheta }\left[3,0, \frac{1}{p}\right]
$$

```
Sum[\mp@subsup{p}{}{-(m+1/2)^2},{m,-Infinity, Infinity }}
EllipticTheta[2, 0, \frac{1}{p}]
```

$$
\begin{aligned}
& \operatorname{Sum}\left[p^{-m^{\wedge} 2},\{m,- \text { Infinity, Infinity }\}\right] \\
& \text { EllipticTheta }\left[3,0, \frac{1}{p}\right]
\end{aligned}
$$

For example for $p=3$ is

$$
1.690611203075214233 \ldots \leq \sum_{m=-\infty}^{\infty} 3^{-\left(m-\operatorname{frac}\left(\frac{n}{2}-\frac{\log \left(\frac{n}{2}\right)-1}{2 \log (3)}\right)\right)^{2}} \leq 1.691459681681715341 \ldots
$$

and here is graph
ListPlot $\left[\right.$ ParallelTable $\left[\mathrm{N}\left[\operatorname{Sum}\left[p^{-\left(m \text {-FractionalPart }\left[n / 2-\frac{\log [n / 2]-1}{2 \log [p]}\right]\right) \wedge},\{\right.\right.\right.$ m, -Infinity, Infinity $\left.\left.\}\right], 20\right]$, $\{n, 1,1000\}]]$

Numerical verification

$$
p=3
$$

```
p=3;
Show[
    ListPlot[
    ParallelTable[
```



```
    {n,100,5000}]], Plot[1,{n,100,5000}, PlotStyle }->\mathrm{ Red], PlotRange }->\mathrm{ All, AxesOrigin }->{0,0.9}
```


$$
p=4
$$

References:

[1] OEIS - The On-Line Encyclopedia of Integer Sequences
[2] Kotěšovec V., Interesting asymptotic formulas for binomial sums, website 9.6.2013
[3] Kotěšovec V., Asymptotic of a sums of powers of binomial coefficients * $x^{\wedge} k$, website 20.9.2012

This article was published on the website http://web.telecom.cz/vaclav.kotesovec/math.htm, 11.7.2014 and in the OEIS, July 112014

