OFFSET
0,1
COMMENTS
The coefficient of n*log(n)^3 in the same asymptotic formula is A = 1/Pi^2.
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section Sierpinski's Constant, p. 124.
LINKS
Adrian W. Dudek, An Elementary Proof of an Asymptotic Formula of Ramanujan, arXiv:1401.1514 [math.NT], 2014.
Ramanujan's Papers, Some formulas in the analytic theory of numbers Messenger of Mathematics, XLV, 1916, 81-84, Formula (3).
FORMULA
B = (12*gamma - 3)/Pi^2 - (36/Pi^4)*zeta'(2).
EXAMPLE
0.744341276391456640439006036785694615691377808839427047585292094877364...
MATHEMATICA
B = (12*EulerGamma - 3)/Pi^2 - (36/Pi^4)*Zeta'[2]; RealDigits[B, 10, 103] // First
CROSSREFS
KEYWORD
AUTHOR
Jean-François Alcover, Jul 11 2014
STATUS
approved