login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A316161 Decimal expansion of the least x such that 1/x + 1/(x+1) + 1/(x+2) = 2. 4
1, 7, 4, 4, 6, 4, 4, 2, 8, 5, 9, 0, 5, 0, 3, 9, 3, 8, 1, 3, 9, 6, 4, 6, 8, 2, 6, 5, 2, 2, 7, 4, 2, 4, 6, 2, 0, 5, 8, 4, 0, 3, 2, 9, 1, 9, 7, 4, 1, 4, 9, 6, 5, 5, 7, 7, 6, 8, 2, 8, 3, 2, 2, 7, 5, 8, 5, 3, 3, 7, 4, 6, 7, 0, 7, 1, 3, 0, 8, 2, 0, 9, 6, 7, 1, 7 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Equivalently, the least root of 2*x^3 + 3*x^2 - 2*x - 2;

Middle root: A316162;

Greatest root: A316163.

See A305328 for a guide to related sequences.

LINKS

Table of n, a(n) for n=0..85.

FORMULA

greatest root: -(1/2) + sqrt[7/3] cos[1/3 arctan[(2 sqrt[79/3])/3]]

middle: -(1/2) - 1/2 sqrt[7/3] cos[1/3 arctan[(2 sqrt[79/3])/3]] + 1/2 sqrt[7] sin[1/3 arctan[(2 sqrt[79/3])/3]]

least: -(1/2) - 1/2 sqrt[7/3] cos[1/3 arctan[(2 sqrt[79/3])/3]] - 1/2 sqrt[7] sin[1/3 arctan[(2 sqrt[79/3])/3]]

EXAMPLE

greatest root: 0.88922855912919436594...

middle root: -0.64458427322415498454...

least root: -1.7446442859050393814...

MATHEMATICA

a = 1; b = 1; c = 1; u = 0; v = 1; w = 2; d = 2;

r[x_] := a/(x + u) + b/(x + v) + c/(x + w);

t = x /. ComplexExpand[Solve[r[x] == d, x]]

N[t, 20]

u = N[t, 200];

RealDigits[u[[1]]]  (* A316161, least *)

RealDigits[u[[2]]]  (* A316162, middle *)

RealDigits[u[[3]]]  (* A316163, greatest *)

CROSSREFS

Cf. A305328, A316162, A316163.

Sequence in context: A198351 A245074 A194474 * A153349 A210463 A154172

Adjacent sequences:  A316158 A316159 A316160 * A316162 A316163 A316164

KEYWORD

nonn,cons

AUTHOR

Clark Kimberling, Jul 21 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 26 04:45 EDT 2021. Contains 348256 sequences. (Running on oeis4.)