OFFSET
1,2
COMMENTS
Equivalently, the least root of x^3 - 4*x - 2;
Middle root: A305327;
Greatest root: A305326.
From Clark Kimberling, Sep 03 2018: (Start)
The following guide applies to zeros of rational functions of the form 1/x + 1/(x+v) + 1/(x+w) = d, for selected values of v,w, and d. The three zeros are distinct real numbers, denoted as least, middle, and greatest. These zeros are also the roots of the following cubic polynomial: p(u,v,w,d) = d x^3 + (d v + d w - 3) x^2 + (d v w - 2 v - 2 w) x - v w.
v w d p(u,v,w,d) least middle greatest
(End)
FORMULA
greatest: (4*cos((1/3)*arctan(sqrt(37/3)/3)))/sqrt(3);
middle: -((2*cos((1/3)*arctan(sqrt(37/3)/3)))/sqrt(3)) + 2*sin((1/3)*arctan(sqrt(37/3)/3));
least: -((2*cos((1/3)*arctan(sqrt(37/3)/3)))/sqrt(3)) - 2*sin((1/3)*arctan(sqrt(37/3)/3)).
EXAMPLE
greatest root: 2.214319743377535187...
middle root: -0.539188872810889116...
least root: -1.67513087056664607088...
MATHEMATICA
PROG
(PARI) solve(x=-2, -1, x^3 - 4*x - 2) \\ Michel Marcus, Jul 16 2018
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, May 30 2018
STATUS
approved