The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A305327 Decimal expansion of the middle x such that 1/x + 1/(x+1) + 1/(x+2) = 1. 3
 5, 3, 9, 1, 8, 8, 8, 7, 2, 8, 1, 0, 8, 8, 9, 1, 1, 6, 5, 2, 5, 8, 7, 5, 9, 0, 2, 6, 9, 8, 5, 2, 0, 0, 0, 8, 0, 9, 9, 8, 8, 7, 1, 0, 9, 5, 4, 2, 1, 2, 6, 7, 0, 1, 7, 1, 9, 2, 2, 8, 4, 4, 6, 6, 6, 7, 6, 8, 6, 0, 0, 3, 4, 4, 2, 7, 6, 6, 9, 5, 5, 0, 5, 3, 7, 6 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Equivalently, the middle root of x^3 - 4*x - 2; Greatest root:  A305326; Least root:  A305328. LINKS FORMULA greatest:  (4*cos((1/3)*arctan(sqrt(37/3)/3)))/sqrt(3); middle: -((2*cos((1/3)*arctan(sqrt(37/3)/3)))/sqrt(3)) + 2*sin((1/3)*arctan(sqrt(37/3)/3)); least: -((2*cos((1/3)*arctan(sqrt(37/3)/3)))/sqrt(3)) - 2*sin((1/3)*arctan(sqrt(37/3)/3)). EXAMPLE greatest root: 2.214319743377535187... middle root: -0.539188872810889116... least root: -1.67513087056664607088... MATHEMATICA r[x_] := 1/x + 1/(x + 1) + 1/(x + 2); -Numerator[Factor[r[x] - 1]] t = x /. ComplexExpand[Solve[r[x] == 1, x]] u = N[t, 120] RealDigits[u[[1]]]  (* A305326 *) RealDigits[u[[2]]]  (* A305327 *) RealDigits[u[[3]]]  (* A305328 *) CROSSREFS Cf. A305326, A305328. Sequence in context: A199438 A220129 A192039 * A112812 A241624 A159275 Adjacent sequences:  A305324 A305325 A305326 * A305328 A305329 A305330 KEYWORD nonn,easy,cons AUTHOR Clark Kimberling, May 30 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 21 16:31 EDT 2021. Contains 347598 sequences. (Running on oeis4.)