OFFSET
0,3
COMMENTS
Also the number of tilings of an n X 4 rectangle using integer-sided rectangular tiles of area n.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000
FORMULA
G.f.: -(10*x^6+11*x^5+16*x^4+9*x^3+7*x^2+2*x+1) / (x^6+x^5+x^4-x^2-x-1).
EXAMPLE
a(6) = 7, because there are 7 tilings of a 6 X 4 rectangle using integer-sided rectangular tiles of area 6:
._._._._. ._._._._. ._._____. .___._._.
| | | | | | | | | | | | | | |
| | | | | |_____| | | |_____| | | | |
| | | | | | | | | | | |___| | |
| | | | | |_____| | | |_____| | | | |
| | | | | | | | | | | | | | |
|_|_|_|_| |_____|_| |_|_____| |___|_|_|
._.___._. ._._.___. .___.___.
| | | | | | | | | | |
| | | | | | | | | | |
| |___| | | | |___| |___|___|
| | | | | | | | | | |
| | | | | | | | | | |
|_|___|_| |_|_|___| |___|___|
MAPLE
a:= n-> `if`(n=0, 1, [11, 1, 5, 3, 9, 1, 7, 1, 9, 3, 5, 1][irem(n, 12)+1]):
seq(a(n), n=0..100);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 06 2012
STATUS
approved