|
|
A220128
|
|
1 followed by period 6: (1, 3, 2, 3, 1, 4) repeated; offset 0.
|
|
2
|
|
|
1, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, 1, 4, 1, 3
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Also the number of tilings of an n X 3 rectangle using integer-sided rectangular tiles of area n.
Also decimal expansion of 12443/109890 = 0.1132314132314... .
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (-3*x^4-4*x^3-4*x^2-2*x-1) / (x^4+x^3-x-1).
a(n) + a(n-1) = a(n-3) + a(n-4) for n>4.
a(0) = 1, a(n) = (7 + 3*cos(n*Pi) + 2*cos(2*n*Pi/3))/3 for n>0. (End)
E.g.f.: 2*(-9/2 + cos(sqrt(3)*x/2)*exp(-x/2) + 2*sinh(x) + 5*cosh(x))/3. - Ilya Gutkovskiy, Jun 21 2016
|
|
EXAMPLE
|
a(6) = 4, because there are 4 tilings of a 6 X 3 rectangle using integer-sided rectangular tiles of area 6:
._._._. .___._. ._.___. ._____.
| | | | | | | | | | | |
| | | | | | | | | | |_____|
| | | | |___| | | |___| | |
| | | | | | | | | | |_____|
| | | | | | | | | | | |
|_|_|_| |___|_| |_|___| |_____|
|
|
MAPLE
|
a:=n-> `if`(n=0, 1, [4, 1, 3, 2, 3, 1][irem(n, 6)+1]): seq(a(n), n=0..100);
|
|
MATHEMATICA
|
PadRight[{1}, 120, {4, 1, 3, 2, 3, 1}] (* Harvey P. Dale, Jan 06 2016 *)
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|