login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A220122
Number A(n,k) of tilings of a k X n rectangle using integer-sided rectangular tiles of area k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
16
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 2, 2, 5, 1, 1, 1, 1, 1, 3, 3, 8, 1, 1, 1, 1, 2, 1, 9, 4, 13, 1, 1, 1, 1, 1, 4, 1, 16, 6, 21, 1, 1, 1, 1, 2, 1, 7, 2, 35, 9, 34, 1, 1, 1, 1, 1, 3, 1, 13, 3, 65, 13, 55, 1, 1, 1, 1, 2, 2, 9, 1, 46, 4, 143, 19, 89, 1, 1
OFFSET
0,13
COMMENTS
Row n gives: 1 followed by period A003418(n): (1, A000045(n+1), ...) repeated; offset 0.
LINKS
FORMULA
For prime p column p has g.f.: 1/(1-x-x^p) or a_p(n) = Sum_{j=0..floor(n/p)} C(n-(p-1)*j,j).
EXAMPLE
A(4,4) = 9, because there are 9 tilings of a 4 X 4 rectangle using integer-sided rectangular tiles of area 4:
._._._._. ._______. .___.___. ._.___._. ._______.
| | | | | |_______| | | | | | | | |_______|
| | | | | |_______| |___|___| | |___| | | | |
| | | | | |_______| | | | | | | | |___|___|
|_|_|_|_| |_______| |___|___| |_|___|_| |_______|
._._.___. ._______. .___._._. .___.___.
| | | | |_______| | | | | | | |
| | |___| |_______| |___| | | |___|___|
| | | | | | | | | | | |_______|
|_|_|___| |___|___| |___|_|_| |_______|
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...
1, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, ...
1, 1, 5, 3, 9, 1, 7, 1, 9, 3, 5, ...
1, 1, 8, 4, 16, 2, 13, 1, 16, 4, 9, ...
1, 1, 13, 6, 35, 3, 46, 1, 35, 6, 15, ...
1, 1, 21, 9, 65, 4, 88, 2, 65, 9, 26, ...
1, 1, 34, 13, 143, 5, 209, 3, 250, 13, 44, ...
1, 1, 55, 19, 281, 6, 473, 4, 495, 37, 75, ...
1, 1, 89, 28, 590, 8, 1002, 5, 1209, 64, 254, ...
MAPLE
b:= proc(n, l) option remember; local i, k, m, s, t;
if max(l[])>n then 0 elif n=0 or l=[] then 1
elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))
else for k do if l[k]=0 then break fi od; s, m:=0, nops(l);
for i from k to m while l[i]=0 do if irem(m, 1+i-k, 'q')=0
and q<=n then s:= s+ b(n, [l[j]$j=1..k-1, q$j=k..i,
l[j]$j=i+1..m]) fi od; s
fi
end:
A:= (n, k)-> b(n, [0$k]):
seq(seq(A(n, d-n), n=0..d), d=0..14);
MATHEMATICA
b[n_, l_] := b[n, l] = Module[{i, k, m, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; {s, m} = {0, Length[l]}; For[ i = k , i <= m && l[[i]] == 0, i++, If[Mod[m, 1+i-k ] == 0 && (q = Quotient[m, 1+i-k]) <= n, s = s+b[n, Join[ l[[1 ;; k-1]], Array[q &, i-k+1], l[[i+1 ;; m]] ]]]]; s]]; a[n_, k_] := b[n, Array[0&, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 19 2013, translated from Maple *)
CROSSREFS
Columns k=0+1, 2-11, 13 give: A000012, A000045(n+1), A000930, A220123, A003520, A220124, A005709, A220125, A220126, A220127, A017905(n+11), A017907(n+13).
Main diagonal gives: A182106.
Sequence in context: A371213 A378604 A323719 * A101446 A333769 A259396
KEYWORD
nonn,tabl
AUTHOR
Alois P. Heinz, Dec 05 2012
STATUS
approved