The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A220135 Number of tilings of an n X 10 rectangle using integer-sided rectangular tiles of area n. 2
 1, 1, 89, 28, 590, 8, 1002, 5, 1209, 64, 254, 1, 2861, 1, 99, 47, 1209, 1, 1274, 1, 1045, 34, 89, 1, 4146, 8, 89, 64, 600, 1, 1527, 1, 1209, 28, 89, 12, 3197, 1, 89, 28, 1968, 1, 1014, 1, 590, 83, 89, 1, 4146, 5, 254, 28, 590, 1, 1274, 8, 1219, 28, 89, 1, 3904 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS 1 followed by period 2520: (1, 89, ..., 5841) repeated; offset 0. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..2520 FORMULA G.f.: see Maple program. EXAMPLE a(7) = 5, because there are 5 tilings of a 7 X 10 rectangle using integer-sided rectangular tiles of area 7: ._._._._._._._._._._.   ._____________._._._.   ._._____________._._. | | | | | | | | | | |   |_____________| | | |   | |_____________| | | | | | | | | | | | | |   |_____________| | | |   | |_____________| | | | | | | | | | | | | |   |_____________| | | |   | |_____________| | | | | | | | | | | | | |   |_____________| | | |   | |_____________| | | | | | | | | | | | | |   |_____________| | | |   | |_____________| | | | | | | | | | | | | |   |_____________| | | |   | |_____________| | | |_|_|_|_|_|_|_|_|_|_|   |_____________|_|_|_|   |_|_____________|_|_| ._._._____________._.   ._._._._____________. | | |_____________| |   | | | |_____________| | | |_____________| |   | | | |_____________| | | |_____________| |   | | | |_____________| | | |_____________| |   | | | |_____________| | | |_____________| |   | | | |_____________| | | |_____________| |   | | | |_____________| |_|_|_____________|_|   |_|_|_|_____________| MAPLE gf:= -(-5840*x^136 +5839*x^135 -5928*x^134 +60*x^133 +5189*x^132 -5285*x^131 -1496*x^130 +928*x^129 -7484*x^128 +557*x^127 -494*x^126 -836*x^125 -14180*x^124 +13384*x^123 -15627*x^122 -5927*x^121 +10767*x^120 -12422*x^119 -11498*x^118 +8324*x^117 -24921*x^116 +5813*x^115 -7409*x^114 -3505*x^113 -22788*x^112 +13672*x^111 -27634*x^110 -12862*x^109 +11206*x^108 -17207*x^107 -26452*x^106 +17129*x^105 -50277*x^104 +11512*x^103 -17938*x^102 -12787*x^101 -23042*x^100 +7805*x^99 -45002*x^98 -10518*x^97 -2969*x^96 -17338*x^95 -39604*x^94 +21144*x^93 -68673*x^92 +12881*x^91 -28074*x^90 -22885*x^89 -22229*x^88 +3198*x^87 -63456*x^86 +9*x^85 -20501*x^84 -17035*x^83 -44066*x^82 +17258*x^81 -76763*x^80 +11371*x^79 -35515*x^78 -26786*x^77 -19392*x^76 +967*x^75 -73127*x^74 +8938*x^73 -34070*x^72 -17281*x^71 -40042*x^70 +11259*x^69 -71956*x^68 +11259*x^67 -40042*x^66 -23120*x^65 -16553*x^64 -2740*x^63 -67288*x^62 +12645*x^61 -36909*x^60 -15108*x^59 -29676*x^58 +5532*x^57 -59246*x^56 +11419*x^55 -38227*x^54 -17035*x^53 -8823*x^52 -5830*x^51 -51778*x^50 +14876*x^49 -33907*x^48 -11207*x^47 -16396*x^46 +1203*x^45 -39478*x^44 +9466*x^43 -27926*x^42 -11499*x^41 -2969*x^40 -4679*x^39 -33324*x^38 +13644*x^37 -23042*x^36 -6948*x^35 -6260*x^34 -166*x^33 -21082*x^32 +5451*x^31 -14774*x^30 -5529*x^29 -472*x^28 -1184*x^27 -15956*x^26 +7833*x^25 -11110*x^24 -3505*x^23 -1570*x^22 -26*x^21 -7404*x^20 +2485*x^19 -5659*x^18 -744*x^17 -911*x^16 -88*x^15 -3949*x^14 +1706*x^13 -2502*x^12 -836*x^11 -494*x^10 +557*x^9 -1645*x^8 +928*x^7 -1496*x^6 +554*x^5 -650*x^4 +60*x^3 -89*x^2 -1) / (-x^136 +x^135 -x^134 +x^132 -x^131 -x^128 -2*x^124 +2*x^123 -2*x^122 -x^121 +2*x^120 -2*x^119 -x^118 +x^117 -3*x^116 +x^115 -x^114 -2*x^112 +x^111 -2*x^110 -2*x^109 +2*x^108 -2*x^107 -2*x^106 +2*x^105 -5*x^104 +2*x^103 -2*x^102 -x^101 -x^99 -2*x^98 -x^97 -x^95 -2*x^94 +2*x^93 -5*x^92 +2*x^91 -2*x^90 -2*x^89 +2*x^88 -2*x^87 -2*x^86 +x^85 -2*x^84 -x^82 +x^81 -3*x^80 +x^79 -x^78 -2*x^77 +3*x^76 -2*x^75 -x^74 +2*x^73 -3*x^72 +x^71 -x^65 +3*x^64 -2*x^63 +x^62 +2*x^61 -3*x^60 +2*x^59 +x^58 -x^57 +3*x^56 -x^55 +x^54 +2*x^52 -x^51 +2*x^50 +2*x^49 -2*x^48 +2*x^47 +2*x^46 -2*x^45 +5*x^44 -2*x^43 +2*x^42 +x^41 +x^39 +2*x^38 +x^37 +x^35 +2*x^34 -2*x^33 +5*x^32 -2*x^31 +2*x^30 +2*x^29 -2*x^28 +2*x^27 +2*x^26 -x^25 +2*x^24 +x^22 -x^21 +3*x^20 -x^19 +x^18 +2*x^17 -2*x^16 +x^15 +2*x^14 -2*x^13 +2*x^12 +x^8 +x^5 -x^4 +x^2 -x +1): a:= n-> coeff(series(gf, x, n+1), x, n): seq(a(n), n=0..100); CROSSREFS Row n=10 of A220122. Sequence in context: A166321 A187812 A075483 * A301827 A262093 A033409 Adjacent sequences:  A220132 A220133 A220134 * A220136 A220137 A220138 KEYWORD nonn,easy AUTHOR Alois P. Heinz, Dec 06 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 6 04:52 EST 2021. Contains 349562 sequences. (Running on oeis4.)