login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number A(n,k) of tilings of a k X n rectangle using integer-sided rectangular tiles of area k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
16

%I #31 Oct 09 2023 04:34:18

%S 1,1,1,1,1,1,1,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1,1,2,2,5,1,1,1,1,1,3,3,8,

%T 1,1,1,1,2,1,9,4,13,1,1,1,1,1,4,1,16,6,21,1,1,1,1,2,1,7,2,35,9,34,1,1,

%U 1,1,1,3,1,13,3,65,13,55,1,1,1,1,2,2,9,1,46,4,143,19,89,1,1

%N Number A(n,k) of tilings of a k X n rectangle using integer-sided rectangular tiles of area k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

%C Row n gives: 1 followed by period A003418(n): (1, A000045(n+1), ...) repeated; offset 0.

%H Alois P. Heinz, <a href="/A220122/b220122.txt">Antidiagonals n = 0..32, flattened</a>

%F For prime p column p has g.f.: 1/(1-x-x^p) or a_p(n) = Sum_{j=0..floor(n/p)} C(n-(p-1)*j,j).

%e A(4,4) = 9, because there are 9 tilings of a 4 X 4 rectangle using integer-sided rectangular tiles of area 4:

%e ._._._._. ._______. .___.___. ._.___._. ._______.

%e | | | | | |_______| | | | | | | | |_______|

%e | | | | | |_______| |___|___| | |___| | | | |

%e | | | | | |_______| | | | | | | | |___|___|

%e |_|_|_|_| |_______| |___|___| |_|___|_| |_______|

%e ._._.___. ._______. .___._._. .___.___.

%e | | | | |_______| | | | | | | |

%e | | |___| |_______| |___| | | |___|___|

%e | | | | | | | | | | | |_______|

%e |_|_|___| |___|___| |___|_|_| |_______|

%e Square array A(n,k) begins:

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...

%e 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, ...

%e 1, 1, 3, 2, 3, 1, 4, 1, 3, 2, 3, ...

%e 1, 1, 5, 3, 9, 1, 7, 1, 9, 3, 5, ...

%e 1, 1, 8, 4, 16, 2, 13, 1, 16, 4, 9, ...

%e 1, 1, 13, 6, 35, 3, 46, 1, 35, 6, 15, ...

%e 1, 1, 21, 9, 65, 4, 88, 2, 65, 9, 26, ...

%e 1, 1, 34, 13, 143, 5, 209, 3, 250, 13, 44, ...

%e 1, 1, 55, 19, 281, 6, 473, 4, 495, 37, 75, ...

%e 1, 1, 89, 28, 590, 8, 1002, 5, 1209, 64, 254, ...

%p b:= proc(n, l) option remember; local i, k, m, s, t;

%p if max(l[])>n then 0 elif n=0 or l=[] then 1

%p elif min(l[])>0 then t:=min(l[]); b(n-t, map(h->h-t, l))

%p else for k do if l[k]=0 then break fi od; s, m:=0, nops(l);

%p for i from k to m while l[i]=0 do if irem(m, 1+i-k, 'q')=0

%p and q<=n then s:= s+ b(n, [l[j]$j=1..k-1, q$j=k..i,

%p l[j]$j=i+1..m]) fi od; s

%p fi

%p end:

%p A:= (n, k)-> b(n, [0$k]):

%p seq(seq(A(n, d-n), n=0..d), d=0..14);

%t b[n_, l_] := b[n, l] = Module[{i, k, m, s, t}, Which[Max[l] > n, 0, n == 0 || l == {}, 1, Min[l] > 0, t = Min[l]; b[n-t, l-t], True, k = Position[l, 0, 1][[1, 1]]; {s, m} = {0, Length[l]}; For[ i = k , i <= m && l[[i]] == 0, i++, If[Mod[m, 1+i-k ] == 0 && (q = Quotient[m, 1+i-k]) <= n, s = s+b[n, Join[ l[[1 ;; k-1]], Array[q &, i-k+1], l[[i+1 ;; m]] ]]]]; s]]; a[n_, k_] := b[n, Array[0&, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* _Jean-François Alcover_, Dec 19 2013, translated from Maple *)

%Y Columns k=0+1, 2-11, 13 give: A000012, A000045(n+1), A000930, A220123, A003520, A220124, A005709, A220125, A220126, A220127, A017905(n+11), A017907(n+13).

%Y Rows n=0+1, 2-10 give: A000012, A040001, A220128, A220129, A220130, A220131, A220132, A220133, A220134, A220135.

%Y Main diagonal gives: A182106.

%K nonn,tabl

%O 0,13

%A _Alois P. Heinz_, Dec 05 2012