login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355336
Number of unlabeled n-node graphs with the largest possible bipartite dimension (or biclique covering number).
2
1, 1, 1, 6, 7, 5, 1, 372, 326
OFFSET
1,4
COMMENTS
Let b(n) be the largest bipartite dimension of an n-node graph. Then b(n) >= A057359(n). If, for all n >= 8, there exists a disconnected n-node graph with bipartite dimension b(n), then b(n) = A057359(n) for all n >= 1. Proof: Since the bipartite dimension of a graph equals the sum of the bipartite dimensions of its connected components, we have that b(n) >= max_{k=1..n-1} b(k)+b(n-k) (i.e., the sequence is superadditive), with equality if there exists a disconnected n-node graph with bipartite dimension b(n). It is easily checked that A057359(n) = max_{k=1..n-1} A057359(k)+A057359(n-k) for n >= 8. Since b(n) = A057359(n) for 1 <= n <= 7 (checked by brute force), the result follows.
Since (b(n)) is superadditive, it follows from Fekete's subadditive lemma that the limit of b(n)/n exists and equals the supremum of b(n)/n. It is easy to see that b(n) <= b(n-1) + 1, so this limit is between 5/7 = b(7)/7 and 1.
The numbers of disconnected n-node graphs with bipartite dimension b(n) for 1 <= n <= 9 are 0, 0, 0, 2, 1, 1, 0, 12, 6.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
STATUS
approved