The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A316159 Expansion of e.g.f. exp(exp(x*exp(-x)) - 1). 0
 1, 1, 0, -4, -1, 47, 17, -1111, -12, 43476, -49665, -2391805, 7528897, 168436465, -1052303380, -14234148280, 161462347715, 1288890088835, -27585406164839, -91839429007223, 5125915000647712, -6443738757309888, -1013794188308572677, 6728499674632962055, 205866724424357904465 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version] M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures] N. J. A. Sloane, Transforms FORMULA a(n) = Sum_{k=0..n} (-k)^(n-k)*binomial(n,k)*Bell(k), where Bell() = A000110. MAPLE a:=series(exp(exp(x*exp(-x))-1), x=0, 25): seq(n!*coeff(a, x, n), n=0..24); # Paolo P. Lava, Mar 26 2019 MATHEMATICA nmax = 24; CoefficientList[Series[Exp[Exp[x Exp[-x]] - 1], {x, 0, nmax}], x] Range[0, nmax]! a[n_] := a[n] = Sum[(-k)^(n - k) Binomial[n, k] BellB[k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 24}] CROSSREFS Cf. A000110, A003725, A007550. Sequence in context: A092667 A060627 A113101 * A113112 A278578 A338681 Adjacent sequences:  A316156 A316157 A316158 * A316160 A316161 A316162 KEYWORD sign AUTHOR Ilya Gutkovskiy, Jun 25 2018 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 14 12:15 EDT 2022. Contains 356116 sequences. (Running on oeis4.)