|
|
A316159
|
|
Expansion of e.g.f. exp(exp(x*exp(-x)) - 1).
|
|
0
|
|
|
1, 1, 0, -4, -1, 47, 17, -1111, -12, 43476, -49665, -2391805, 7528897, 168436465, -1052303380, -14234148280, 161462347715, 1288890088835, -27585406164839, -91839429007223, 5125915000647712, -6443738757309888, -1013794188308572677, 6728499674632962055, 205866724424357904465
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
Table of n, a(n) for n=0..24.
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to arXiv version]
M. Bernstein and N. J. A. Sloane, Some canonical sequences of integers, Linear Alg. Applications, 226-228 (1995), 57-72; erratum 320 (2000), 210. [Link to Lin. Alg. Applic. version together with omitted figures]
N. J. A. Sloane, Transforms
|
|
FORMULA
|
a(n) = Sum_{k=0..n} (-k)^(n-k)*binomial(n,k)*Bell(k), where Bell() = A000110.
|
|
MAPLE
|
a:=series(exp(exp(x*exp(-x))-1), x=0, 25): seq(n!*coeff(a, x, n), n=0..24); # Paolo P. Lava, Mar 26 2019
|
|
MATHEMATICA
|
nmax = 24; CoefficientList[Series[Exp[Exp[x Exp[-x]] - 1], {x, 0, nmax}], x] Range[0, nmax]!
a[n_] := a[n] = Sum[(-k)^(n - k) Binomial[n, k] BellB[k], {k, n}]; a[0] = 1; Table[a[n], {n, 0, 24}]
|
|
CROSSREFS
|
Cf. A000110, A003725, A007550.
Sequence in context: A092667 A060627 A113101 * A113112 A278578 A338681
Adjacent sequences: A316156 A316157 A316158 * A316160 A316161 A316162
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
Ilya Gutkovskiy, Jun 25 2018
|
|
STATUS
|
approved
|
|
|
|