login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316157
Positive integers Q such that there is a cubic x^3 - Qx + R that has three real roots whose continued fraction expansion have common tails.
1
3, 7, 9, 21, 21, 39, 61, 63, 93, 129, 169, 171, 219, 273, 331, 333, 399, 471, 547, 549, 633, 723, 817, 819, 921, 1029, 1141, 1143, 1263, 1389, 1519, 1521, 1659, 1803, 1951, 1953, 2109, 2271, 2437, 2439, 2613, 2793, 2977, 2979, 3171, 3369, 3571, 3573, 3783, 3999, 4219, 4221, 4449, 4683, 4921, 4923
OFFSET
1,1
COMMENTS
After 3, the prime terms appear to be the primes in A275878 (namely, 7, 61, 331, 547, 1951, ...)
LINKS
Joseph-Alfred Serret, Section 512, Cours d'algèbre supérieure, Gauthier-Villars.
EXAMPLE
For the first entry of Q=3, we have the polynomial x^3 - 3x + 1. Its roots, expressed as continued fractions, all have a common tail of 3, 2, 3, 1, 1, 6, 11, ... The next examples are Q=7 with the polynomial x^3 - 7x + 7, then Q=9 with the polynomial x^3 - 9x + 9, and Q=21 with the polynomials x^3 - 21x + 35 and x^3 - 21x + 37. Note that for the Q=7 example, we get the common tail of 2, 3, 1, 6, 10, 5, ... which is contained in A039921.
MATHEMATICA
SetOfQRs = {};
M = 1000;
Do[
If[Divisible[3 (a^2 - a + 1), c^2] &&
Divisible[(2 a - 1) (a^2 - a + 1), c^3] &&
3 (a^2 - a + 1)/c^2 <= M,
SetOfQRs =
Union[SetOfQRs, { { (3 (a^2 - a + 1))/
c^2, ((2 a - 1) (a^2 - a + 1))/c^3}} ]],
{c, 1, M/3 + 1, 2}, {a, 1, Sqrt[M c^2/3 + 3/4] + 1/2}];
Print[SetOfQRs // MatrixForm];
CROSSREFS
Cf. A316184. Contained in the union of A034017 and three times A034017.
Sequence in context: A304539 A306124 A096102 * A045797 A118555 A056652
KEYWORD
nonn
AUTHOR
Greg Dresden, Jun 25 2018
EXTENSIONS
More terms from Robert G. Wilson v, Jul 02 2018
STATUS
approved