login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A045797 Evenish numbers (prime to 10 and 10's digit is even). 14
1, 3, 7, 9, 21, 23, 27, 29, 41, 43, 47, 49, 61, 63, 67, 69, 81, 83, 87, 89, 101, 103, 107, 109, 121, 123, 127, 129, 141, 143, 147, 149, 161, 163, 167, 169, 181, 183, 187, 189, 201, 203, 207, 209, 221, 223, 227, 229, 241, 243, 247, 249, 261, 263, 267, 269, 281 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

From Jianing Song, Apr 27 2019: (Start)

Numbers congruent to {1, 3, 7, 9} mod 20.

Numbers k such that Kronecker(-20,k) = A289741(k) = +1. (End)

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..10000

Index entries for linear recurrences with constant coefficients, signature (1, 0, 0, 1, -1).

FORMULA

Conjecture a(n) = a(n-1)+a(n-4)-a(n-5). G.f.: x*(1+2*x+4*x^2+2*x^3+11*x^4) / ((1-x)^2*(1+x)*(1+x^2)). - Colin Barker, Apr 14 2012

The conjecture above is correct. - Jianing Song, Apr 27 2019

MATHEMATICA

Flatten[Table[10n+{1, 3, 7, 9}, {n, 0, 30, 2}]] (* Harvey P. Dale, Dec 05 2012 *)

PROG

(Haskell)

a045797 n = a045797_list !! (n-1)

a045797_list = filter (even . (`mod` 10) . (`div` 10)) a045572_list

-- Reinhard Zumkeller, Dec 10 2011

(PARI) is(n)=gcd(n, 10)==1 && n\10%2==0 \\ Charles R Greathouse IV, Sep 24 2015

CROSSREFS

Complement of A045798 with respect to A045572.

Sequence in context: A306124 A096102 A316157 * A118555 A056652 A014959

Adjacent sequences:  A045794 A045795 A045796 * A045798 A045799 A045800

KEYWORD

nonn,base,easy,nice

AUTHOR

J. H. Conway

EXTENSIONS

More terms from Erich Friedman.

Offset changed by Reinhard Zumkeller, Dec 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 26 01:48 EST 2020. Contains 331270 sequences. (Running on oeis4.)