login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045796
Numbers m = usigma(sigma(k))/k such that usigma(sigma(k)) is divisible by k.
2
1, 2, 2, 3, 3, 2, 5, 2, 3, 4, 2, 2, 4, 4, 2, 2, 4, 7, 4, 6, 3, 4, 5, 3, 4, 5, 4, 5, 3, 4, 4, 2, 5, 4, 6, 4, 8, 7, 6, 4, 5, 3, 2, 4, 5, 7, 7, 4, 4, 2, 9, 5, 5, 4, 8, 4, 4, 4, 8, 7, 4, 4, 4, 5, 6, 4, 8, 5, 8, 8, 6, 4, 6, 4, 5, 6, 4, 4, 4, 8, 5, 4, 6, 5, 8, 7, 5
OFFSET
1,2
COMMENTS
a(n) = m values in A045795. - Donovan Johnson, Mar 12 2013
LINKS
FORMULA
a(n) = usigma(sigma(A045795(n)))/A045795(n).
MAPLE
A034448 := proc(n) local ans, i: ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[2][i][1]^ifactors(n)[2][i][2]): od: RETURN(ans) end: isA045795 := proc(n) if A034448(numtheory[sigma](n)) mod n = 0 then A034448(numtheory[sigma](n))/n ; else -1 ; fi ; end: A045796 := proc() local n, a : n := 2: while true do a := isA045795(n) ; if a>=0 then printf("%d, ", a) ; fi ; n := n+1: od : end: A045796() ; # R. J. Mathar, Jun 26 2007
MATHEMATICA
s[n_] := Times @@ (1 + Power @@@ FactorInteger[DivisorSigma[1, n]])/n; s[1] = 1; Select[s /@ Range[10^6], IntegerQ] (* Amiram Eldar, Aug 26 2022 *)
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Corrected and extended by R. J. Mathar, Jun 26 2007
Missing first term added and offset corrected by Donovan Johnson, Mar 12 2013
STATUS
approved