login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A045794
Consider all quadruples {a,b,c,d} which reach {k,k,k,k} in n steps under map {a,b,c,d}->{|a-b|,|b-c|,|c-d|,|d-a|}; look at max{a,b,c,d}; sequence gives minimal value of this.
5
1, 1, 1, 3, 3, 4, 9, 11, 13, 31, 37, 44, 105, 125, 149, 355, 423, 504, 1201, 1431, 1705, 4063, 4841, 5768, 13745, 16377, 19513, 46499, 55403, 66012, 157305, 187427, 223317, 532159, 634061, 755476, 1800281, 2145013, 2555757, 6090307, 7256527
OFFSET
1,4
COMMENTS
Another version of A065678, which has further information.
LINKS
A. Behn, C. Kribs-Zaleta and V. Ponomarenko, The convergence of difference boxes, Amer. Math. Monthly 112 (2005), no. 5, 426-439.
J. Copeland and J. Haemer, Work: Differences Among Women, SunExpert, 1999, pp. 38-43.
Raymond Greenwell, The Game of Diffy, Math. Gazette, Oct 1989, p. 222.
Peter J. Kernan (pete(AT)theory2.phys.cwru.edu), Algorithm and code [Broken link]
Dawn J. Lawrie, The Diffy game.
Univ. Mass. Computer Science 121, The Diffy Game [Broken link]
FORMULA
Equals [ b(0)+b(2), b(1)+b(2), b(3), b(2)+b(4), b(3)+b(4), b(5), ... ], where b() = A000073. - Peter J. Kernan (pete(AT)theory2.phys.cwru.edu).
From Colin Barker, Feb 18 2015: (Start)
a(n) = 3*a(n-3)+a(n-6)+a(n-9).
G.f.: -x*(x^7-x^6+x^5+x^2+x+1) / (x^9+x^6+3*x^3-1).
(End)
EXAMPLE
a(7) = 9 because {0,1,4,9}->{1,3,5,9}->{2,2,4,8}->{0,2,4,6}->{2,2,2,6}->{0,0,4,4}->{0,4,0,4}->{4,4,4,4} (7 steps and no quadruple with a,b,c,d <= 8 works).
MATHEMATICA
LinearRecurrence[{0, 0, 3, 0, 0, 1, 0, 0, 1}, {1, 1, 1, 3, 3, 4, 9, 11, 13}, 50] (* Harvey P. Dale, May 30 2015 *)
PROG
a=(0 1 0 1); while 1{s=a_3-a_2-a_1; s%2?a*=2:s/=2; a+=s; a_2=a_0+a_1; a_0=0; a_1=s; print a_3}
(PARI) Vec(-x*(x^7-x^6+x^5+x^2+x+1)/(x^9+x^6+3*x^3-1) + O(x^100)) \\ Colin Barker, Feb 18 2015
CROSSREFS
Sequence in context: A128036 A332311 A332340 * A065678 A022598 A107635
KEYWORD
nonn,nice,easy
AUTHOR
Ikuo Kiyokawa (kiyo19(AT)mxr.meshnet.or.jp)
EXTENSIONS
Reference and better description from Erich Friedman
STATUS
approved