login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275878
Standard Jacobi primes.
3
7, 61, 331, 547, 1951, 2437, 3571, 4219, 7351, 8269, 9241, 10267, 13669, 23497, 25117, 55897, 60919, 74419, 89269, 92401, 102121, 112327, 115837, 126691, 145861, 170647, 202021, 231019, 241117, 246247, 251431, 267307, 283669, 329677, 347821, 360187, 372769
OFFSET
1,1
COMMENTS
From Peter Bala, Feb 20 2022: (Start)
Primes of the form (3*k + 2)^3 - (3*k + 1)^3 = 27*k^2 + 27*k + 7.
Equivalently, primes p such that 4*p = 27*x^2 + 1, where x is odd.
Primes p of the form 6*m + 1, where 8*m + 1 is an odd square.
A prime p is in this list iff binomial(2*(p-1)/3,(p-1)/3) == -1 (mod p). See Cosgrave and Dilcher, Theorem 5, Corollary 3. (End)
Subsequence of cuban primes (A002407). - Bernard Schott, Jul 28 2022
LINKS
John B. Cosgrave and Karl Dilcher, An Introduction to Gauss Factorials, Amer. Math. Monthly, Vol. 118, No. 9 (November 2011), pp. 812-829.
J. B. Cosgrave and Karl Dilcher, A role for generalized Fermat numbers, Math. Comp., to appear 2016; see also Paper #10, See Table 7.1.
PROG
(Perl) use ntheory ":all"; forprimes { if (($_%3)==1) { my $z = znorder(factorial(($_-1)/3), $_); $z/=3 unless $z%3; say if $z==1; } } 1e6; # Dana Jacobsen, Aug 18 2016
(Perl) use ntheory ":all"; for (0..1000) { my $p = 27*$_*$_ + 27*$_ + 7; say $p if is_prime($p); } # Dana Jacobsen, Aug 18 2016
CROSSREFS
Sequence in context: A141952 A289723 A064398 * A129079 A249556 A135165
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 17 2016
EXTENSIONS
Terms a(21) and beyond from Dana Jacobsen, Aug 18 2016
STATUS
approved