

A275880


Solutions to a certain congruence.


2



26, 244, 305, 338, 9755, 18205, 33076, 48775, 60707, 70673, 82690, 92410, 95990, 101651, 112102, 165380, 167690, 184820, 191980, 211178, 224204, 232373, 258322, 274730, 297743, 330760, 335380, 369640, 383960, 422356, 448408, 516644, 516934, 549460, 583444
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


REFERENCES

J. B. Cosgrave and K. Dilcher, A role for generalized Fermat numbers, Math. Comp., to appear 2016; http://johnbcosgrave.com/publications.php (See paper #10). See Table 2.1.


LINKS

Lars Blomberg, Table of n, a(n) for n = 1..106


FORMULA

From Lars Blomberg, Nov 28 2016: (Start)
The Gaussian factorial is G(N,n) = prod_{j=1,N and gcd(j,n)=1} (j).
Values n are restricted to the form n=w*p^alfa, with w=q_1^beta_1 * ... * q_s^beta_s and p, q_1, ... q_s are distinct primes, p = 1(mod 3), q_1, ... q_s = 1(mod 3) with s>=0, alfa, beta_1, ... beta_s >=1. The case s = 0 is interpreted as w = 1.
Values n must also satisfy G(floor((n1)/3), n) = 1 (mod n). (End)


CROSSREFS

Cf. A275881.
Sequence in context: A163726 A293614 A245873 * A020537 A184461 A088889
Adjacent sequences: A275877 A275878 A275879 * A275881 A275882 A275883


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Aug 17 2016


EXTENSIONS

a(10)a(35) from Lars Blomberg, Nov 28 2016


STATUS

approved



