login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A275876
a(n) = 4*n*(n^2 - 3*n - 1)/3.
1
0, -4, -8, -4, 16, 60, 136, 252, 416, 636, 920, 1276, 1712, 2236, 2856, 3580, 4416, 5372, 6456, 7676, 9040, 10556, 12232, 14076, 16096, 18300, 20696, 23292, 26096, 29116, 32360, 35836, 39552, 43516, 47736, 52220, 56976, 62012, 67336, 72956, 78880, 85116, 91672, 98556, 105776, 113340, 121256
OFFSET
0,2
LINKS
Peter John Hilton and Jean Pedersen, Descartes, Euler, Poincaré, Pólya and Polyhedra, L'Enseign. Math., 27 (1981), 327-343. See Cor. 2.
FORMULA
From Colin Barker, Aug 15 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>3.
G.f.: -4*x*(1-2*x-x^2) / (1-x)^4. (End)
E.g.f.: 4*x*(-3 + x^2)*exp(x)/3. - G. C. Greubel, Apr 28 2019
MATHEMATICA
LinearRecurrence[{4, -6, 4, -1}, {0, -4, -8, -4}, 50] (* G. C. Greubel, Apr 28 2019 *)
PROG
(PARI) concat(0, Vec(-4*x*(1-2*x-x^2)/(1-x)^4 + O(x^50))) \\ Colin Barker, Aug 15 2016
(Magma) [4*n*(n^2-3*n-1)/3: n in [0..50]]; // G. C. Greubel, Apr 28 2019
(Sage) [4*n*(n^2-3*n-1)/3 for n in (0..50)] # G. C. Greubel, Apr 28 2019
(GAP) List([0..50], n-> 4*n*(n^2-3*n-1)/3) # G. C. Greubel, Apr 28 2019
CROSSREFS
Sequence in context: A019254 A304293 A055374 * A255293 A019246 A019192
KEYWORD
sign,easy
AUTHOR
N. J. A. Sloane, Aug 14 2016
STATUS
approved