login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A255293
Number of 1's in expansion of F^n mod 3, where F = 1/x+2+x+1/y+y.
2
1, 4, 8, 4, 17, 29, 8, 37, 49, 4, 17, 37, 17, 76, 128, 29, 136, 196, 8, 37, 89, 37, 176, 292, 49, 260, 584, 4, 17, 37, 17, 76, 136, 37, 176, 260, 17, 76, 176, 76, 353, 605, 128, 613, 961, 29, 136, 332, 136, 653, 1105, 196
OFFSET
0,2
COMMENTS
A255293 and A255294 together are a second mod 3 analog of A072272.
EXAMPLE
The pairs [no. of 1's, no. of 2's] are [1, 0], [4, 1], [8, 5], [4, 1], [17, 8], [29, 20], [8, 5], [37, 28], [49, 64], [4, 1], [17, 8], [37, 28], [17, 8], [76, 49], [128, 101], [29, 20], [136, 109], [196, 241], [8, 5], [37, 28], [89, 80], [37, 28], [176, 149], [292, 289], [49, 64], [260, 305], [584, 437], [4, 1], [17, 8], [37, 28], ...
MAPLE
# C3 Counts 1's and 2's
C3 := proc(f) local c, ix, iy, f2, i, t1, t2, n1, n2;
f2:=expand(f) mod 3; n1:=0; n2:=0;
if whattype(f2) = `+` then
t1:=nops(f2);
for i from 1 to t1 do t2:=op(i, f2); ix:=degree(t2, x); iy:=degree(t2, y);
c:=coeff(coeff(t2, x, ix), y, iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; od: RETURN([n1, n2]);
else ix:=degree(f2, x); iy:=degree(f2, y);
c:=coeff(coeff(f2, x, ix), y, iy);
if (c mod 3) = 1 then n1:=n1+1; else n2:=n2+1; fi; RETURN([n1, n2]);
fi;
end;
F4:=1/x+2+x+1/y+y mod 3;
g:=(F, n)->expand(F^n) mod 3;
[seq(C3(g(F4, n))[1], n=0..60)];
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 21 2015
STATUS
approved