login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376486
G.f. satisfies A(x) = 1 / (1 - x^3*A(x)^3 * (1 + x)).
3
1, 0, 0, 1, 1, 0, 4, 8, 4, 22, 66, 66, 162, 560, 840, 1529, 4985, 9690, 16774, 47349, 107229, 195500, 483000, 1172724, 2311516, 5249556, 12910716, 27299992, 59765400, 144602352, 321554224, 700449496, 1654540452, 3789265198, 8344514618, 19327204006
OFFSET
0,7
FORMULA
G.f.: (1/x) * Series_Reversion( x*(1-x^3)/(1+x^4) ).
a(n) = Sum_{k=0..floor(n/3)} binomial(4*k,k) * binomial(k,n-3*k) / (3*k+1).
D-finite with recurrence 243*n*(n-1)*(n+1)*a(n) +81*n*(n-1)*(14*n-31)*a(n-1) +27*(73*n-240)*(n-1)*(n-2)*a(n-2) +36*(-22*n^3-99*n^2+731*n-870)*a(n-3) +48*(-263*n^3+1908*n^2-4449*n+3290)*a(n-4) -128*(n-4)*(230*n^2-1429*n+2205)*a(n-5) -768*(n-5)*(43*n-168)*(n-4)*a(n-6) -9216*(n-5)*(n-6)*(2*n-9)*a(n-7) -4096*(n-5)*(n-6)*(n-7)*a(n-8)=0. - R. J. Mathar, Sep 26 2024
MAPLE
A376486 := proc(n)
add(binomial(4*k, k)*binomial(k, n-3*k)/(3*k+1), k=0..floor(n/3)) ;
end proc:
seq(A376486(n), n=0..70) ;
# R. J. Mathar, Sep 26 2024
PROG
(PARI) a(n) = sum(k=0, n\3, binomial(4*k, k)*binomial(k, n-3*k)/(3*k+1));
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Sep 25 2024
STATUS
approved