login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285624
Triangle read by rows: T(n,k) is the number of vertices with degree k counted over all hypergraphs on n labeled nodes, n>=1,0<=k<=2^(n-1).
0
1, 1, 4, 8, 4, 24, 96, 144, 96, 24, 512, 4096, 14336, 28672, 35840, 28672, 14336, 4096, 512, 163840, 2621440, 19660800, 91750400, 298188800, 715653120, 1312030720, 1874329600, 2108620800, 1874329600, 1312030720, 715653120, 298188800, 91750400, 19660800, 2621440, 163840
OFFSET
1,3
FORMULA
E.g.f. for column k: x * Sum_{n>=0} binomial(2^n,k)*2^(2^n-1)*x^n/n!.
T(n,k) = n * binomial(2^(n-1),k) * 2^(2^(n-1)-1).
EXAMPLE
1, 1;
4, 8, 4;
24, 96, 144, 96, 24;
512, 4096, 14336, 28672, 35840, 28672, 14336, 4096, 512;
...
MATHEMATICA
nn = 5; Grid[ Map[Select[#, # > 0 &] &,
Drop[Transpose[Table[A[z_] :=Sum[Binomial[2^n, k] 2^(2^n - 1) z^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[ z A[z], {z, 0, nn}], z], {k, 0, 2^(nn - 1)}]], 1]]]
CROSSREFS
Sequence in context: A019246 A019192 A376486 * A356636 A334957 A154912
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Apr 22 2017
STATUS
approved