login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316184
Positive integers R such that there is a cubic x^3 - Qx + R that has three real roots whose continued fraction expansion have common tails.
1
1, 7, 9, 35, 37, 91, 183, 189, 341, 559, 845, 855
OFFSET
1,2
LINKS
Joseph-Alfred Serret, Section 512, Cours d'algèbre supérieure, Gauthier-Villars.
EXAMPLE
For the first entry of R=1, we have the polynomial x^3 - 3x + 1. Its roots, expressed as continued fractions, all have a common tail of 3, 2, 3, 1, 1, 6, 11, ... The next examples are R=7 with the polynomial x^3 - 7x + 7, then R=9 with the polynomial x^3 - 9x + 9, and Q=35 with the polynomial x^3 - 21x + 35. Note that for the R=7 example, we get the common tail of 2, 3, 1, 6, 10, 5, ... which is contained in A039921.
MATHEMATICA
SetOfQRs = {};
M = 1000;
Do[
If[Divisible[3 (a^2 - a + 1), c^2] &&
Divisible[(2 a - 1) (a^2 - a + 1), c^3] &&
3 (a^2 - a + 1)/c^2 <= M,
SetOfQRs =
Union[SetOfQRs, { { (3 (a^2 - a + 1))/
c^2, ((2 a - 1) (a^2 - a + 1))/c^3}} ]],
{c, 1, M/3 + 1, 2}, {a, 1, Sqrt[M c^2/3 + 3/4] + 1/2}];
Print[SetOfQRs // MatrixForm];
CROSSREFS
Sequence in context: A261961 A177030 A189974 * A359367 A321760 A083203
KEYWORD
nonn,more
AUTHOR
Greg Dresden, Jun 25 2018
STATUS
approved