login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A316185
Number of strict integer partitions of the n-th prime into a prime number of prime parts.
5
0, 0, 1, 1, 0, 1, 0, 2, 2, 3, 5, 5, 6, 8, 10, 13, 18, 20, 26, 32, 34, 45, 54, 66, 90, 106, 117, 135, 142, 165, 269, 311, 375, 398, 546, 579, 689, 823, 938, 1107, 1301, 1352, 1790, 1850, 2078, 2153, 2878, 3811, 4241, 4338, 4828, 5495, 5637, 7076, 8000, 9032
OFFSET
1,8
LINKS
FORMULA
a(n) = A045450(A000040(n)).
EXAMPLE
The a(14) = 8 partitions of 43 into a prime number of distinct prime parts: (41,2), (31,7,5), (29,11,3), (23,17,3), (23,13,7), (19,17,7), (19,13,11), (17,11,7,5,3).
MAPLE
h:= proc(n) option remember; `if`(n=0, 0,
`if`(isprime(n), n, h(n-1)))
end:
b:= proc(n, i, c) option remember; `if`(n=0,
`if`(isprime(c), 1, 0), `if`(i<2, 0, b(n, h(i-1), c)+
`if`(i>n, 0, b(n-i, h(min(n-i, i-1)), c+1))))
end:
a:= n-> b(ithprime(n)$2, 0):
seq(a(n), n=1..56); # Alois P. Heinz, May 26 2021
MATHEMATICA
Table[Length[Select[IntegerPartitions[Prime[n]], And[UnsameQ@@#, PrimeQ[Length[#]], And@@PrimeQ/@#]&]], {n, 10}]
(* Second program: *)
h[n_] := h[n] = If[n == 0, 0, If[PrimeQ[n], n, h[n - 1]]];
b[n_, i_, c_] := b[n, i, c] = If[n == 0,
If[PrimeQ[c], 1, 0], If[i < 2, 0, b[n, h[i - 1], c] +
If[i > n, 0, b[n - i, h[Min[n - i, i - 1]], c + 1]]]];
a[n_] := b[Prime[n], Prime[n], 0];
Array[a, 56] (* Jean-François Alcover, Jun 11 2021, after Alois P. Heinz *)
PROG
(PARI) seq(n)={my(p=vector(n, k, prime(k))); my(v=Vec(prod(k=1, n, 1 + x^p[k]*y + O(x*x^p[n])))); vector(n, k, sum(i=1, k, polcoeff(v[1+p[k]], p[i])))} \\ Andrew Howroyd, Jun 26 2018
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 25 2018
EXTENSIONS
More terms from Alois P. Heinz, Jun 26 2018
STATUS
approved