login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A056768
Number of partitions of the n-th prime into parts that are all primes.
23
1, 1, 2, 3, 6, 9, 17, 23, 40, 87, 111, 219, 336, 413, 614, 1083, 1850, 2198, 3630, 5007, 5861, 9282, 12488, 19232, 33439, 43709, 49871, 64671, 73506, 94625, 221265, 279516, 394170, 441250, 766262, 853692, 1175344, 1608014, 1975108, 2675925
OFFSET
1,3
LINKS
David A. Corneth, Table of n, a(n) for n = 1..10000 (first 4000 terms from Alois P. Heinz)
FORMULA
a(n) = A000607(prime(n)).
a(n) = A168470(n) + 1. - Alonso del Arte, Feb 15 2014, restating the corresponding formula given by R. J. Mathar for A168470.
a(n) = [x^prime(n)] Product_{k>=1} 1/(1 - x^prime(k)). - Ilya Gutkovskiy, Jun 05 2017
EXAMPLE
a(4) = 3 because the 4th prime is 7 which can be partitioned using primes in 3 ways: 7, 5 + 2, and 3 + 2 + 2.
In connection with the 6th prime 13, for instance, we have the a(6) = 9 prime partitions: 13 = 2 + 2 + 2 + 2 + 2 + 3 = 2 + 2 + 2 + 2 + 5 = 2 + 2 + 2 + 7 = 2 + 2 + 3 + 3 + 3 = 2 + 3 + 3 + 5 = 2 + 11 = 3 + 3 + 7 = 3 + 5 + 5.
MAPLE
b:= proc(n, i) option remember; `if`(n=0 or i=2
and n::even, 1, `if`(i=2 or n=1, 0,
b(n, prevprime(i)))+`if`(i>n, 0, b(n-i, i)))
end:
a:= n-> b(ithprime(n)$2):
seq(a(n), n=1..50); # Alois P. Heinz, Sep 15 2016
MATHEMATICA
Table[Count[IntegerPartitions[n], _?(AllTrue[#, PrimeQ]&)], {n, Prime[ Range[ 40]]}] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Mar 07 2015 *)
n=40; ser=Product[1/(1-x^Prime[i]), {i, 1, n}]; Table[SeriesCoefficient[ser, {x, 0, Prime[i]}], {i, 1, n}] (* Gus Wiseman, Sep 14 2016 *)
PROG
(Haskell)
a056768 = a000607 . a000040 -- Reinhard Zumkeller, Aug 05 2012
CROSSREFS
Cf. A000041, A000607, A100118, A276687, A070215 (distinct parts).
Sequence in context: A018721 A018384 A282842 * A029511 A320271 A056532
KEYWORD
nonn
AUTHOR
Brian Galebach, Aug 16 2000
EXTENSIONS
More terms from James A. Sellers, Aug 25 2000
STATUS
approved