OFFSET
1,3
COMMENTS
A prime plane tree is either (case 1) a prime number, or (case 2) a sequence of prime plane trees whose weights are an integer partition of a prime number, where the weight of a tree is the sum of weights of its branches. Prime plane trees are "multichains" in the multiorder of integer partitions of prime numbers into prime parts (A056768).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..681
Gus Wiseman, Comcategories and Multiorders, (pdf version)
EXAMPLE
The a(5) = 11 prime plane trees of weight A000040(5) = 11 are: {11, (3,3,5), (3,3,(2,3)), (2,2,7), (2,2,(2,5)), (2,2,(2,(2,3))), (2,2,(2,2,3)), (2,3,3,3), (2,2,2,5), (2,2,2,(2,3)), (2,2,2,2,3)}.
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i=2, 0,
b(n, prevprime(i)))+`if`(i>n, 0, b(n-i, i)*(1+
`if`(i>2, b(i, prevprime(i)), 0))))
end:
a:= n-> `if`(n<3, 1, 1+b(ithprime(n), ithprime(n-1))):
seq(a(n), n=1..40); # Alois P. Heinz, Sep 15 2016
MATHEMATICA
n=20;
ser=Product[1/(1-c[Prime[i]]*x^Prime[i]), {i, 1, n}];
sys=Table[c[Prime[i]]==Expand[SeriesCoefficient[ser, {x, 0, Prime[i]}]-c[Prime[i]]+1], {i, 1, n}];
Block[{c}, Set@@@sys]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 13 2016
STATUS
approved