The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A276689 Least term in the periodic part of the continued fraction expansion of sqrt(n) or 0 if n is square. 2
 0, 0, 2, 1, 0, 4, 2, 1, 1, 0, 6, 3, 2, 1, 1, 1, 0, 8, 4, 1, 2, 1, 1, 1, 1, 0, 10, 5, 2, 1, 2, 1, 1, 1, 1, 1, 0, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 14, 7, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 16, 8, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 18, 9, 6, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS If r > 0 is even, then a((rm/2)^2+m) = r for all m >= 1 and a((r^2-2)^2/4 + (r+1)^3) = r. If r is odd, then a((rm)^2+2m) = r for all m >= 1 and a(r^4 + r^3 + 5(r+1)^2/4) = r. LINKS Chai Wah Wu, Table of n, a(n) for n = 0..10000 PROG (Python) from sympy import continued_fraction_periodic def A276689(n):     x = continued_fraction_periodic(0, 1, n)     return min(x[1]) if len(x) > 1 else 0 CROSSREFS Cf. A031424, A003285, A091453, A096491. Sequence in context: A327549 A293808 A327805 * A091453 A062173 A004558 Adjacent sequences:  A276686 A276687 A276688 * A276690 A276691 A276692 KEYWORD nonn AUTHOR Chai Wah Wu, Sep 28 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 24 14:24 EDT 2021. Contains 345417 sequences. (Running on oeis4.)