login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A031424
Least term in period of continued fraction for sqrt(n), as n runs through the nonsquares (A000037).
7
2, 1, 4, 2, 1, 1, 6, 3, 2, 1, 1, 1, 8, 4, 1, 2, 1, 1, 1, 1, 10, 5, 2, 1, 2, 1, 1, 1, 1, 1, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 14, 7, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 16, 8, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 18, 9, 6, 1, 1, 3, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 20, 10, 1, 5, 4, 1
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
Min[ContinuedFraction[Sqrt[#]][[2]]]&/@Select[Range[ 200], !IntegerQ[ Sqrt[ #]]&] (* Harvey P. Dale, May 20 2021 *)
PROG
(PARI) do(n)=my(a0=sqrtint(n), a, b=a0, c=n-a0^2, bold, cold, least=2*a0); while(1, a=(a0+b)\c; if(a<2, return(1)); least=min(least, a); bold=b; b=a*c-b; cold=c; c=(n-b^2)\c; if(b==bold || c==cold, return(least)))
first(n)=my(v=vector(n), k, i); while(1, k++; for(m=k^2+1, k^2+2*k, if(i++>n, return(v)); v[i]=do(m))) \\ Charles R Greathouse IV, Aug 10 2017
CROSSREFS
Sequence in context: A007739 A330086 A290935 * A013942 A187816 A088423
KEYWORD
nonn
EXTENSIONS
Name corrected by Charles R Greathouse IV, Aug 10 2017
STATUS
approved