login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A091453
Triangular array T(n,k) read by rows in which row n consists of the numbers floor(2n/k), k=1,2,...,2n+1.
8
0, 0, 2, 1, 0, 4, 2, 1, 1, 0, 6, 3, 2, 1, 1, 1, 0, 8, 4, 2, 2, 1, 1, 1, 1, 0, 10, 5, 3, 2, 2, 1, 1, 1, 1, 1, 0, 12, 6, 4, 3, 2, 2, 1, 1, 1, 1, 1, 1, 0, 14, 7, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 0, 16, 8, 5, 4, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 18, 9, 6, 4, 3, 3, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 20, 10, 6
OFFSET
0,3
LINKS
FORMULA
a(n) = floor(1/(sqrt(n)-floor(sqrt(n)))) for n not a square; a(n) = 0 otherwise. - Andrew Howroyd, Oct 02 2019
EXAMPLE
First five rows:
0
0 2 1
0 4 2 1 1
0 6 3 2 1 1 1
0 8 4 2 2 1 1 1 1
PROG
(PARI) T(n, k) = 2*n\k;
tabf(nn) = for (n=0, nn, for (k=1, 2*n+1, print1(T(n, k), ", ")); print()); \\ Michel Marcus, Sep 30 2016
(PARI) a(n)={if(n<1, 0, my(t=sqrtint(n-1)); 2*t\(n-t^2))} \\ Andrew Howroyd, Oct 02 2019
CROSSREFS
Cf. A013942 (without first column).
Sequence in context: A293808 A327805 A276689 * A062173 A004558 A129699
KEYWORD
nonn,tabf
AUTHOR
Clark Kimberling, Feb 03 2004
EXTENSIONS
Offset corrected and missing a(99) inserted by Andrew Howroyd, Oct 02 2019
STATUS
approved