|
|
A091456
|
|
Least number k such that n * phi(k) < k, where phi is Euler's totient function.
|
|
4
|
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
By Mertens' theorem and the Prime Number Theorem log log a(n) ~ n / e^gamma. - Charles R Greathouse IV, Sep 07 2012
|
|
LINKS
|
Table of n, a(n) for n=1..9.
|
|
PROG
|
(PARI) a(n) = {k = 1; while (n*eulerphi(k) >= k, k++); k; } \\ Michel Marcus, Sep 25 2013
(PARI) a(n)=my(k=1); forprime(p=2, , if(n*eulerphi(k)<k, return(k), k*=p)) \\ Charles R Greathouse IV, Sep 25 2013
|
|
CROSSREFS
|
Subsequence of A002110. Cf. A000010, A054741, A073087, A091439 (n * phi(k) <= k).
Sequence in context: A077176 A101178 A294925 * A354411 A293756 A161620
Adjacent sequences: A091453 A091454 A091455 * A091457 A091458 A091459
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v, Jan 10 2004
|
|
STATUS
|
approved
|
|
|
|