login
A091457
Greatest numerator of the remainder in a reciprocal expansion of 1.
1
1, 1, 1, 5, 59, 4951, 9770455, 31950134954551
OFFSET
1,4
COMMENTS
Conjecture: in the "extremal" expansion x_i = A000058(i) for i=1..n-3.
FORMULA
Let 1 = 1/x_1 + ... + 1/x_{n-1} + p/q, where 1/x_1>=...>=1/x_{n-1}>=p/q and (p, q)=1. a(n) = maximal p over all such expansions. Corresponded denominators sequence is A091458.
EXAMPLE
a(7) = 9770455 because 1 = 1/2 + 1/3 + 1/7 + 1/43 + 1/5413 + 1/5419 + 9770455/52975482882 and there is no expansion with larger numerator of the remainder.
CROSSREFS
Sequence in context: A120608 A143766 A132549 * A289724 A188269 A100906
KEYWORD
frac,hard,nonn,more
AUTHOR
Max Alekseyev, Jan 11 2004
STATUS
approved