login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A188269 Prime numbers of the form k^4 + k^3 + 4*k^2 + 7*k + 5 = k^4 + (k+1)^3 + (k+2)^2. 1
59, 348077, 10023053, 30414227, 55367063, 72452489, 85856933, 109346759, 182679473, 254112143, 305966369, 433051637, 727914497, 2029672529, 4178961167, 6528621257, 8346080159, 12783893813, 17220494579, 17993776223, 19618171127, 23673478589, 29448235247, 43333033853 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

Bunyakovsky's conjecture implies that this sequence is infinite. - Charles R Greathouse IV, Jun 09 2011

All the terms in the sequence are congruent to 2 mod 3. - K. D. Bajpai, Apr 11 2014

LINKS

Charles R Greathouse IV, Table of n, a(n) for n = 1..10000

EXAMPLE

5 is prime and appears in the sequence because 0^4 + 1^3 + 2^2 = 5.

59 is prime and appears in the sequence because 2^4 + 3^3 + 4^2 = 59.

348077 = 24^4 + (24+1)^3 + (24+2)^2 = 24^4 + 25^3 + 26^2.

10023053 = 56^4 + (56+1)^3 + (56+2)^2 = 56^4 + 57^3 + 58^2.

MAPLE

%p KD := proc(n) local a, b, d; a:=(n)^4+(n+1)^3+(n+2)^2; if isprime(a) then RETURN (a); fi; end: seq(KD(n), n=0..1000); # K. D. Bajpai, Apr 11 2014

MATHEMATICA

lst={}; Do[If[PrimeQ[p=n^4+n^3+4*n^2+7*n+5], AppendTo[lst, p]], {n, 200}]; lst

Select[Table[n^4+n^3+4n^2+7n+5, {n, 500}], PrimeQ] (* Harvey P. Dale, Jun 19 2011 *)

PROG

(PARI) for(n=1, 1e3, if(isprime(k=n^4+n^3+4*n^2+7*n+5), print1(k", "))) \\ Charles R Greathouse IV, Jun 09 2011

CROSSREFS

Cf. A088548, A088550, A156018.

Sequence in context: A235215 A178066 A191947 * A093403 A087535 A058931

Adjacent sequences:  A188266 A188267 A188268 * A188270 A188271 A188272

KEYWORD

nonn

AUTHOR

Rafael Parra Machio, Jun 09 2011

EXTENSIONS

Duplicate Mathematica program deleted by Harvey P. Dale, Jun 19 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 18 15:30 EST 2020. Contains 332019 sequences. (Running on oeis4.)