login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188268
Smallest k such that prime(k) + prime(k+1) = prime(k+2) + prime(k-n).
1
4, 8, 153, 61, 258, 649, 4134, 3384, 29295, 101468, 33607, 165325, 298594, 703923, 2393291, 32214330, 12432950, 12849377, 539169143, 396264119, 406027081, 33772761, 5097974305, 4764006510, 23719367863, 44982489668, 54393474823, 25708849510
OFFSET
1,1
COMMENTS
Goldbach's conjecture is one of the oldest unsolved problems in number theory and in all of mathematics. It states: every even integer greater than 2 can be expressed as the sum of two primes. Because there exist several decompositions (see A002375), this sequence gives k for a second decomposition of prime(k) + prime(k+1) that gives prime(k+2) + prime(k-n).
a(n) > pi(2*10^12) for n >= 29. - Donovan Johnson, Apr 06 2011
EXAMPLE
a(2) = 8 because prime(8) + prime(9) = prime(10) + prime(6); i.e., 19 + 23 = 29 + 13.
MAPLE
A188268 := proc(n) local k , pk; k := 1+n ; pk := Array([ithprime(k), ithprime(k+1), ithprime(k+2), ithprime(k-n)]) ; for k from 1+n do if pk[1]+pk[2]-pk[3] = pk[4] then return k ; end if; pk[1] := pk[2] ; pk[2] := pk[3] ; pk[3] := nextprime(pk[2]) ; pk[4] := nextprime(pk[4]) ; end do; end proc: # R. J. Mathar, Mar 31 2011
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Mar 30 2011
EXTENSIONS
a(23)-a(28) from Donovan Johnson, Apr 06 2011
STATUS
approved