OFFSET
0,3
COMMENTS
Equivalently, coefficient of x^n in the series 1/(1-(2x/Pi)*K(16x)), where K(x) = (Pi/2)*F(1/2,1/2;1;x) is the complete elliptic integral (defined as in Mathematica, i.e. with x instead of x^2).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..800
Vaclav Kotesovec, Graph - the asymptotic ratio (10000 terms)
FORMULA
Recurrence: a(n+1) = sum(binomial(2k,k)^2*a(n-k),k=0..n).
G.f.: 1/(1 - x/AGM(sqrt(1 - 16*x), 1)). - Vaclav Kotesovec, Sep 30 2019
a(n) ~ Pi * 2^(4*n + 4) / (n * (log(n) - 16*Pi)^2) * (1 - 2*(gamma + 4*log(2)) / (log(n) - 16*Pi) + (3*gamma^2 - Pi^2/2 + 24*gamma*log(2) + 48*log(2)^2) / (log(n) - 16*Pi)^2), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Oct 01 2019
MATHEMATICA
CoefficientList[Series[1/(1-(2x/Pi)EllipticK[16x]), {x, 0, 100}], x]
a[0] = 1; Flatten[{1, Table[a[n+1] = Sum[Binomial[2*k, k]^2*a[n-k], {k, 0, n}], {n, 0, 20}]}] (* Vaclav Kotesovec, Sep 28 2019 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emanuele Munarini, Mar 30 2011
STATUS
approved