login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126275
Moment of inertia of all magic squares of order n.
4
5, 60, 340, 1300, 3885, 9800, 21840, 44280, 83325, 147620, 248820, 402220, 627445, 949200, 1398080, 2011440, 2834325, 3920460, 5333300, 7147140, 9448285, 12336280, 15925200, 20345000, 25742925, 32284980, 40157460, 49568540, 60749925, 73958560, 89478400
OFFSET
2,1
LINKS
Peter Loly, The Invariance of the Moment of Inertia of Magic Squares, Mathematical Gazette, Vol. 88, No. 511 (March 2004), 151-153, JSTOR:3621372.
Ivars Peterson, Magic Square Physics, Science News online, Jul 01, 2006; Vol. 170, No. 1.
FORMULA
a(n) = (n^2 * (n^4 - 1))/12.
G.f.: -5*x^2*(x+1)*(x^2+4*x+1) / (x-1)^7. - Colin Barker, Dec 10 2012
a(n) = Sum_{i=0..n^2-1} (k+i)^2 - (k*n + A027480(n-1))^2. - Charlie Marion, May 08 2021
MATHEMATICA
Array[(#^2*(#^4 - 1))/12 &, 31, 2] (* or *)
Drop[CoefficientList[Series[-5 x^2*(x + 1) (x^2 + 4 x + 1)/(x - 1)^7, {x, 0, 32}], x], 2] (* Michael De Vlieger, Apr 13 2021 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {5, 60, 340, 1300, 3885, 9800, 21840}, 40] (* Harvey P. Dale, Apr 03 2023 *)
PROG
(PARI) a(n) = (n^2 * (n^4 - 1))/12 \\ Felix Fröhlich, May 31 2021
(PARI) Vec(-5*x^2*(x+1)*(x^2+4*x+1)/(x-1)^7 + O(x^30)) \\ Felix Fröhlich, May 31 2021
CROSSREFS
Cf. A027480.
Sequence in context: A289724 A188269 A100906 * A059602 A290747 A212700
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Dec 23 2006
EXTENSIONS
More terms from Colin Barker, Dec 10 2012
STATUS
approved