login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A126274
Partial sum of A005915.
5
1, 15, 72, 220, 525, 1071, 1960, 3312, 5265, 7975, 11616, 16380, 22477, 30135, 39600, 51136, 65025, 81567, 101080, 123900, 150381, 180895, 215832, 255600, 300625, 351351, 408240, 471772, 542445, 620775, 707296, 802560, 907137, 1021615
OFFSET
0,2
FORMULA
a(n) = Sum_{i=0..n} (i + 1)*(3*i^2 + 3*i + 1).
a(n) = (3*n^4 + 6*n^3 + 3*n^2)/4 + 2*n^3 + 5*n^2 + 4*n + 1.
a(n) = (1/4)*(n + 1)^2*(n + 2)*(3*n + 2). - N-E. Fahssi, May 03 2008
G.f.: (1 + 10 x + 7 x^2)/(1 - x)^5. - N-E. Fahssi, May 03 2008
a(n) = (n+1)*A000578(n+1) - Sum_{i=0..n} A000578(i). - Bruno Berselli, Apr 24 2010
a(n) = Sum_{i=1..n} Sum_{j=1..n} Sum_{k=1..n} max(i,j,k). - Enrique Pérez Herrero, Feb 26 2013
a(n) = A000217(n+1)*A000326(n+1). - Bruno Berselli, Dec 13 2013
E.g.f.: (3*x^4 + 32*x^3 + 86*x^2 + 56*x + 4)*exp(x)/4. - G. C. Greubel, Oct 23 2018
MAPLE
seq(coeff(series((1+10*x+7*x^2)/(1-x)^5, x, n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Oct 24 2018
MATHEMATICA
Table[(3*n^4 + 14*n^3 + 23*n^2 + 16*n + 4)/4, {n, 0, 10}] (* G. C. Greubel, Oct 23 2018 *)
LinearRecurrence[{5, -10, 10, -5, 1}, {1, 15, 72, 220, 525}, 40] (* Harvey P. Dale, Mar 31 2022 *)
PROG
(Magma) [1/4*(n + 1)^2*(n + 2)*(3*n + 2): n in [0..30]]; // Vincenzo Librandi, May 16 2011
(PARI) vector(30, n, n--; (3*n^4+14*n^3+23*n^2+16*n+4)/4) \\ G. C. Greubel, Oct 23 2018
(GAP) List([0..35], n->(1/4)*(n+1)^2*(n+2)*(3*n+2)); # Muniru A Asiru, Oct 24 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Mar 09 2007
EXTENSIONS
Corrected and extended by Vincenzo Librandi, May 16 2011
STATUS
approved