login
A290747
Total number of distinct Lyndon factors appearing in all words of length n over an alphabet of size 5.
2
5, 60, 515, 3800, 25749, 165070, 1018135, 6103350, 35797125, 206363748, 1173148275, 6592732750, 36692520865, 202542849720, 1110149980567, 6047465281420, 32765782091385, 176683116394850, 948690479365355, 5074595254876020, 27051397095965605, 143757461666945890
OFFSET
1,1
LINKS
Amy Glen, Jamie Simpson, W. F. Smyth, Counting Lyndon Factors, Electronic Journal of Combinatorics 24(3) (2017), #P3.28.
PROG
(PARI) Inner(m, s)=d=divisors(m); sum(i=1, length(d), moebius(m/d[i])*s^d[i]);
Lyndon(s, n) = sum(m=1, n, (n-m+1)/m * s^(n-m) * Inner(m, s));
vector(100, i, Lyndon(5, i)) \\ Lars Blomberg, Aug 12 2017
CROSSREFS
Sequence in context: A100906 A126275 A059602 * A212700 A378280 A099672
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 11 2017
EXTENSIONS
a(11)-a(22) from Lars Blomberg, Aug 12 2017
STATUS
approved