login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290746
Total number of distinct Lyndon factors appearing in all words of length n over an alphabet of size 2.
2
2, 9, 30, 87, 234, 597, 1470, 3522, 8264, 19067, 43398, 97659, 217674, 481221, 1056370, 2304676, 5000934, 10799564, 23222114, 49742577, 106181710, 225947089, 479426238, 1014615466, 2142099088, 4512515283, 9486635788, 19906068415, 41696243298, 87196489799
OFFSET
1,1
LINKS
Amy Glen, Jamie Simpson, W. F. Smyth, Counting Lyndon Factors, Electronic Journal of Combinatorics 24(3) (2017), #P3.28.
PROG
(PARI) Inner(m, s)=d=divisors(m); sum(i=1, length(d), moebius(m/d[i])*s^d[i]);
Lyndon(s, n) = sum(m=1, n, (n-m+1)/m * s^(n-m) * Inner(m, s));
vector(100, i, Lyndon(2, i)) \\ Lars Blomberg, Aug 12 2017
CROSSREFS
Sequence in context: A372152 A056778 A177111 * A268586 A056288 A261174
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Aug 11 2017
EXTENSIONS
a(11)-a(33) from Lars Blomberg, Aug 12 2017
STATUS
approved