login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A177111 Sequence defined by the recurrence formula a(n+1)=sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=1, k=-2 and l=0. 1
1, 1, -2, -9, -30, -84, -204, -389, -326, 1780, 13156, 57452, 197552, 551846, 1138832, 752911, -8109806, -57353648, -255573404, -898715548, -2539157248, -5106161134, -1629827488, 50275158584, 330772150256, 1453122571658 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Table of n, a(n) for n=0..25.

FORMULA

G.f f: f(z)=(1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=-2, l=0).

Conjecture: +(n+1)*a(n) +(-7*n+2)*a(n-1) +3*(5*n-7)*a(n-2) +3*(n-8)*a(n-3) +2*(-10*n+41)*a(n-4) +8*(n-5)*a(n-5)=0. - R. J. Mathar, Mar 02 2016

EXAMPLE

a(2)=2*1*1-4=-2. a(3)=2*1*(-2)-4+1^2-2=-9. a(4)=2*1*(-9)-4+2*1*(-2)-4=-30.

MAPLE

l:=0: : k := -2 : m:=1:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :

taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);

CROSSREFS

Cf. A177110.

Sequence in context: A228932 A196421 A056778 * A290746 A268586 A056288

Adjacent sequences:  A177108 A177109 A177110 * A177112 A177113 A177114

KEYWORD

easy,sign

AUTHOR

Richard Choulet, May 03 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 20 10:18 EST 2022. Contains 350471 sequences. (Running on oeis4.)