login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A177111
Sequence defined by the recurrence formula a(n+1) = sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=1, k=-2 and l=0.
2
1, 1, -2, -9, -30, -84, -204, -389, -326, 1780, 13156, 57452, 197552, 551846, 1138832, 752911, -8109806, -57353648, -255573404, -898715548, -2539157248, -5106161134, -1629827488, 50275158584, 330772150256, 1453122571658
OFFSET
0,3
LINKS
FORMULA
G.f.: f(z) = (1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=-2, l=0).
Conjecture: +(n+1)*a(n) +(-7*n+2)*a(n-1) +3*(5*n-7)*a(n-2) +3*(n-8)*a(n-3) +2*(-10*n+41)*a(n-4) +8*(n-5)*a(n-5)=0. - R. J. Mathar, Mar 02 2016
Conjectured recurrence follows from the differential equation (8*z^6 - 20*z^5 + 3*z^4 + 15*z^3 - 7*z^2 + z) * f'(z) + (2*z^4 - 15*z^3 + 9*z^2 - 5*z + 1) * f(z) + 4*z^4 - 11*z^3 + 9*z^2 + 3*z - 1 = 0 satisfied by the g.f. - Robert Israel, Jan 03 2024
EXAMPLE
a(2)=2*1*1-4=-2. a(3)=2*1*(-2)-4+1^2-2=-9. a(4)=2*1*(-9)-4+2*1*(-2)-4=-30.
MAPLE
l:=0: : k := -2 : m:=1:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
CROSSREFS
Cf. A177110.
Sequence in context: A352405 A372152 A056778 * A290746 A268586 A056288
KEYWORD
easy,sign
AUTHOR
Richard Choulet, May 03 2010
STATUS
approved