Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #11 Jan 03 2024 16:22:48
%S 1,1,-2,-9,-30,-84,-204,-389,-326,1780,13156,57452,197552,551846,
%T 1138832,752911,-8109806,-57353648,-255573404,-898715548,-2539157248,
%U -5106161134,-1629827488,50275158584,330772150256,1453122571658
%N Sequence defined by the recurrence formula a(n+1) = sum(a(p)*a(n-p)+k,p=0..n)+l for n>=1, with here a(0)=1, a(1)=1, k=-2 and l=0.
%H Robert Israel, <a href="/A177111/b177111.txt">Table of n, a(n) for n = 0..1767</a>
%F G.f.: f(z) = (1-sqrt(1-4*z*(a(0)-z*a(0)^2+z*a(1)+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z) (k=-2, l=0).
%F Conjecture: +(n+1)*a(n) +(-7*n+2)*a(n-1) +3*(5*n-7)*a(n-2) +3*(n-8)*a(n-3) +2*(-10*n+41)*a(n-4) +8*(n-5)*a(n-5)=0. - _R. J. Mathar_, Mar 02 2016
%F Conjectured recurrence follows from the differential equation (8*z^6 - 20*z^5 + 3*z^4 + 15*z^3 - 7*z^2 + z) * f'(z) + (2*z^4 - 15*z^3 + 9*z^2 - 5*z + 1) * f(z) + 4*z^4 - 11*z^3 + 9*z^2 + 3*z - 1 = 0 satisfied by the g.f. - _Robert Israel_, Jan 03 2024
%e a(2)=2*1*1-4=-2. a(3)=2*1*(-2)-4+1^2-2=-9. a(4)=2*1*(-9)-4+2*1*(-2)-4=-30.
%p l:=0: : k := -2 : m:=1:d(0):=1:d(1):=m: for n from 1 to 30 do d(n+1):=sum(d(p)*d(n-p)+k, p=0..n)+l:od :
%p taylor((1-sqrt(1-4*z*(d(0)-z*d(0)^2+z*m+(k+l)*z^2/(1-z)+k*z^2/(1-z)^2)))/(2*z), z=0, 30); seq(d(n), n=0..30);
%Y Cf. A177110.
%K easy,sign
%O 0,3
%A _Richard Choulet_, May 03 2010