The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268586 Expansion of (x^3*(3*x - 2))/(2*x - 1)^3. 6
 0, 0, 0, 2, 9, 30, 88, 240, 624, 1568, 3840, 9216, 21760, 50688, 116736, 266240, 602112, 1351680, 3014656, 6684672, 14745600, 32374784, 70778880, 154140672, 334495744, 723517440, 1560281088, 3355443200, 7197425664, 15401484288, 32883343360 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have two east steps below y = x - 1 and no east steps above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link. LINKS Colin Barker, Table of n, a(n) for n = 0..1000 Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016. Index entries for linear recurrences with constant coefficients, signature (6,-12,8). FORMULA G.f.: (x^3*(3*x - 2))/(2*x - 1)^3. From Colin Barker, Feb 08 2016: (Start) a(n) = 2^(n-5)*(n-2)*(n+5) for n>1. a(n) = 6*a(n-1)-12*a(n-2)+8*a(n-3) for n>4. (End) MATHEMATICA CoefficientList[Series[(x^3 (3 x - 2))/(2 x - 1)^3, {x, 0, 30}], x] (* Michael De Vlieger, Feb 08 2016 *) LinearRecurrence[{6, -12, 8}, {0, 0, 0, 2, 9}, 40] (* Harvey P. Dale, Apr 25 2020 *) PROG (PARI) concat(vector(3), Vec(x^3*(2-3*x)/(1-2*x)^3 + O(x^100))) \\ Colin Barker, Feb 08 2016 CROSSREFS Sequence in context: A056778 A177111 A290746 * A056288 A261174 A273652 Adjacent sequences:  A268583 A268584 A268585 * A268587 A268588 A268589 KEYWORD nonn,easy AUTHOR Ran Pan, Feb 07 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 01:21 EDT 2020. Contains 337315 sequences. (Running on oeis4.)