login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A268586 Expansion of (x^3*(3*x - 2))/(2*x - 1)^3. 6
0, 0, 0, 2, 9, 30, 88, 240, 624, 1568, 3840, 9216, 21760, 50688, 116736, 266240, 602112, 1351680, 3014656, 6684672, 14745600, 32374784, 70778880, 154140672, 334495744, 723517440, 1560281088, 3355443200, 7197425664, 15401484288, 32883343360 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have two east steps below y = x - 1 and no east steps above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link.

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.

Index entries for linear recurrences with constant coefficients, signature (6,-12,8).

FORMULA

G.f.: (x^3*(3*x - 2))/(2*x - 1)^3.

From Colin Barker, Feb 08 2016: (Start)

a(n) = 2^(n-5)*(n-2)*(n+5) for n>1.

a(n) = 6*a(n-1)-12*a(n-2)+8*a(n-3) for n>4.

(End)

MATHEMATICA

CoefficientList[Series[(x^3 (3 x - 2))/(2 x - 1)^3, {x, 0, 30}], x] (* Michael De Vlieger, Feb 08 2016 *)

PROG

(PARI) concat(vector(3), Vec(x^3*(2-3*x)/(1-2*x)^3 + O(x^100))) \\ Colin Barker, Feb 08 2016

CROSSREFS

Sequence in context: A056778 A177111 A290746 * A056288 A261174 A273652

Adjacent sequences:  A268583 A268584 A268585 * A268587 A268588 A268589

KEYWORD

nonn,easy,changed

AUTHOR

Ran Pan, Feb 07 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 26 06:54 EDT 2017. Contains 292502 sequences.