login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268586
Expansion of (x^3*(3*x - 2))/(2*x - 1)^3.
6
0, 0, 0, 2, 9, 30, 88, 240, 624, 1568, 3840, 9216, 21760, 50688, 116736, 266240, 602112, 1351680, 3014656, 6684672, 14745600, 32374784, 70778880, 154140672, 334495744, 723517440, 1560281088, 3355443200, 7197425664, 15401484288, 32883343360
OFFSET
0,4
COMMENTS
a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have two east steps below y = x - 1 and no east steps above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link.
LINKS
Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
FORMULA
G.f.: (x^3*(3*x - 2))/(2*x - 1)^3.
From Colin Barker, Feb 08 2016: (Start)
a(n) = 2^(n-5)*(n-2)*(n+5) for n>1.
a(n) = 6*a(n-1)-12*a(n-2)+8*a(n-3) for n>4.
(End)
MATHEMATICA
CoefficientList[Series[(x^3 (3 x - 2))/(2 x - 1)^3, {x, 0, 30}], x] (* Michael De Vlieger, Feb 08 2016 *)
LinearRecurrence[{6, -12, 8}, {0, 0, 0, 2, 9}, 40] (* Harvey P. Dale, Apr 25 2020 *)
PROG
(PARI) concat(vector(3), Vec(x^3*(2-3*x)/(1-2*x)^3 + O(x^100))) \\ Colin Barker, Feb 08 2016
CROSSREFS
Sequence in context: A056778 A177111 A290746 * A056288 A261174 A273652
KEYWORD
nonn,easy
AUTHOR
Ran Pan, Feb 07 2016
STATUS
approved