OFFSET
0,4
COMMENTS
a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have two east steps below y = x - 1 and no east steps above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link.
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
Index entries for linear recurrences with constant coefficients, signature (6,-12,8).
FORMULA
G.f.: (x^3*(3*x - 2))/(2*x - 1)^3.
From Colin Barker, Feb 08 2016: (Start)
a(n) = 2^(n-5)*(n-2)*(n+5) for n>1.
a(n) = 6*a(n-1)-12*a(n-2)+8*a(n-3) for n>4.
(End)
MATHEMATICA
CoefficientList[Series[(x^3 (3 x - 2))/(2 x - 1)^3, {x, 0, 30}], x] (* Michael De Vlieger, Feb 08 2016 *)
LinearRecurrence[{6, -12, 8}, {0, 0, 0, 2, 9}, 40] (* Harvey P. Dale, Apr 25 2020 *)
PROG
(PARI) concat(vector(3), Vec(x^3*(2-3*x)/(1-2*x)^3 + O(x^100))) \\ Colin Barker, Feb 08 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Ran Pan, Feb 07 2016
STATUS
approved