The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A268587 Expansion of x^4*(5 - 16*x + 13*x^2)/(1 - 2*x)^4. 5
 0, 0, 0, 0, 5, 24, 85, 264, 760, 2080, 5488, 14080, 35328, 87040, 211200, 505856, 1198080, 2809856, 6533120, 15073280, 34537472, 78643200, 178061312, 401080320, 899153920, 2006974464, 4461690880, 9881780224, 21810380800, 47982837760, 105243475968 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,5 COMMENTS a(n) is the number of North-East lattice paths from (0,0) to (n,n) that have exactly three east steps below y = x - 1 and no east steps above y = x+1. Details can be found in Section 4.1 in Pan and Remmel's link. LINKS Robert Israel, Table of n, a(n) for n = 0..3270 Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016. Index entries for linear recurrences with constant coefficients, signature (8,-24,32,-16). FORMULA G.f.: x^4*(5 - 16*x + 13*x^2)/(1 - 2*x)^4. From Colin Barker, Feb 08 2016: (Start) a(n) = 8*a(n-1) - 24*a(n-2) + 32*a(n-3) - 16*a(n-4) for n > 6. a(n) = 2^(n-7)*(n-3)*(n+4)*(n+11)/3 for n > 2. (End) E.g.f.: (33 + 60*x + 39*x^2 + (-33 + 6*x + 15*x^2 + 2*x^3)*exp(2*x))/96. - G. C. Greubel, May 24 2019 MAPLE F:= gfun:-rectoproc({16*a(n)-32*a(n+1)+24*a(n+2)-8*a(n+3)+a(n+4), a(0)=0, a(1)=0, a(2)=0, a(3)=0, a(4)=5, a(5)=24, a(6)=85}, a(n), remember): map(F, [\$0..40]); # Robert Israel, Feb 07 2016 MATHEMATICA CoefficientList[Series[x^4 (5 -16x +13x^2)/(1-2x)^4, {x, 0, 40}], x] (* Michael De Vlieger, Feb 08 2016 *) PROG (PARI) concat(vector(4), Vec(x^4*(5-16*x+13*x^2)/(1-2*x)^4 + O(x^40))) \\ Colin Barker, Feb 08 2016 (Magma) R:=PowerSeriesRing(Integers(), 40); [0, 0, 0, 0] cat Coefficients(R!( x^4*(5-16*x+13*x^2)/(1-2*x)^4 )); // G. C. Greubel, May 24 2019 (Sage) (x^4*(5-16*x+13*x^2)/(1-2*x)^4).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 24 2019 (GAP) Concatenation([0, 0, 0, 0], List([3..40], n-> 2^(n-7)*(n-3)*(n+4)*(n+11)/3 )) # G. C. Greubel, May 24 2019 CROSSREFS Cf. A268462, A268586. Sequence in context: A213766 A000347 A270906 * A334459 A270682 A272420 Adjacent sequences: A268584 A268585 A268586 * A268588 A268589 A268590 KEYWORD nonn,easy AUTHOR Ran Pan, Feb 07 2016 EXTENSIONS Typo in name and g.f. corrected by Georg Fischer, May 24 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 20 03:14 EDT 2024. Contains 374441 sequences. (Running on oeis4.)