|
|
A268462
|
|
Expansion of (2 x^4*(5 - 12*x + 8*x^2))/(1 - 2*x)^4.
|
|
6
|
|
|
0, 0, 0, 0, 10, 56, 224, 768, 2400, 7040, 19712, 53248, 139776, 358400, 901120, 2228224, 5431296, 13074432, 31129600, 73400320, 171573248, 397934592, 916455424, 2097152000, 4771020800, 10796138496, 24310185984, 54492397568, 121634816000, 270448721920, 599147937792
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
COMMENTS
|
a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which total number of east steps below y = x-1 or above y = x+1 is exactly three. Details can be found in Section 4.1 in Pan and Remmel's link.
|
|
LINKS
|
|
|
FORMULA
|
G.f.: (2 x^4*(5 - 12*x + 8*x^2))/(1 - 2*x)^4.
a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) for n>3. - Vincenzo Librandi, Feb 05 2016
a(n) = 2^(n-4)*(n-3)*(n+1)*(n+2)/3 for n>2. - Colin Barker, Feb 08 2016
|
|
MATHEMATICA
|
CoefficientList[Series[(2 x^4 (5 - 12 x + 8 x^2)) / (1 - 2 x)^4, {x, 0, 33}], x] (* Vincenzo Librandi, Feb 05 2016 *)
LinearRecurrence[{8, -24, 32, -16}, {0, 0, 0, 0, 10, 56, 224}, 40] (* Harvey P. Dale, Feb 10 2022 *)
|
|
PROG
|
(Magma) I:=[0, 0, 0, 0, 10, 56, 224]; [n le 7 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 05 2016
(PARI) concat(vector(4), Vec(2*x^4*(5-12*x+8*x^2)/(1-2*x)^4 + O(x^100))) \\ Colin Barker, Feb 08 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|