login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A268462
Expansion of (2 x^4*(5 - 12*x + 8*x^2))/(1 - 2*x)^4.
6
0, 0, 0, 0, 10, 56, 224, 768, 2400, 7040, 19712, 53248, 139776, 358400, 901120, 2228224, 5431296, 13074432, 31129600, 73400320, 171573248, 397934592, 916455424, 2097152000, 4771020800, 10796138496, 24310185984, 54492397568, 121634816000, 270448721920, 599147937792
OFFSET
0,5
COMMENTS
a(n) is the number of North-East lattice paths from (0,0) to (n,n) in which total number of east steps below y = x-1 or above y = x+1 is exactly three. Details can be found in Section 4.1 in Pan and Remmel's link.
LINKS
Ran Pan, Jeffrey B. Remmel, Paired patterns in lattice paths, arXiv:1601.07988 [math.CO], 2016.
FORMULA
G.f.: (2 x^4*(5 - 12*x + 8*x^2))/(1 - 2*x)^4.
a(n) = 8*a(n-1)-24*a(n-2)+32*a(n-3)-16*a(n-4) for n>3. - Vincenzo Librandi, Feb 05 2016
a(n) = 2^(n-4)*(n-3)*(n+1)*(n+2)/3 for n>2. - Colin Barker, Feb 08 2016
MATHEMATICA
CoefficientList[Series[(2 x^4 (5 - 12 x + 8 x^2)) / (1 - 2 x)^4, {x, 0, 33}], x] (* Vincenzo Librandi, Feb 05 2016 *)
LinearRecurrence[{8, -24, 32, -16}, {0, 0, 0, 0, 10, 56, 224}, 40] (* Harvey P. Dale, Feb 10 2022 *)
PROG
(Magma) I:=[0, 0, 0, 0, 10, 56, 224]; [n le 7 select I[n] else 8*Self(n-1)-24*Self(n-2)+32*Self(n-3)-16*Self(n-4): n in [1..40]]; // Vincenzo Librandi, Feb 05 2016
(PARI) concat(vector(4), Vec(2*x^4*(5-12*x+8*x^2)/(1-2*x)^4 + O(x^100))) \\ Colin Barker, Feb 08 2016
CROSSREFS
Sequence in context: A137931 A053493 A198833 * A296918 A001786 A258478
KEYWORD
nonn,easy
AUTHOR
Ran Pan, Feb 04 2016
STATUS
approved