The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137931 Sum of the principal diagonals of a 2n X 2n square spiral. 5
 0, 10, 56, 170, 384, 730, 1240, 1946, 2880, 4074, 5560, 7370, 9536, 12090, 15064, 18490, 22400, 26826, 31800, 37354, 43520, 50330, 57816, 66010, 74944, 84650, 95160, 106506, 118720, 131834, 145880, 160890, 176896, 193930, 212024, 231210, 251520, 272986, 295640 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This is concerned with 2n X 2n square spirals of the form illustrated in the Example section. LINKS Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1). FORMULA a(n) = -1 + n + Sum_{k=0..2n} (2k^2 - k + 1) = n -1 +(2*n+1)*(8*n^2-n+3)/3. a(n) = 2*n^2 + 2*n + (16*n^3 + 2*n)/3 = 2*n*(8*n^2+3*n+4)/3. G.f.: 2*x*(3*x+5)*(x+1)/(x-1)^4. - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009 EXAMPLE Example with n = 2: . 7---8---9--10 | | 6 1---2 11 | | | 5---4---3 12 | 16--15--14--13 . a(0) = 2(0)^2 + 2(0) + (16(0)^3 + 2(0))/3 = 0; a(2) = 2(2)^2 + 2(2) + (16(2)^3 + 2(2))/3 = 56. PROG (Python) f = lambda n: -1 + n + sum(2*k**2 - k + 1 for k in range(0, 2*n+1)) (Python) a = lambda n: 2*n**2 + 2*n + (16*n**3 + 2*n)/3 CROSSREFS Cf. A137928, A002061. A bisection of A137930. Sequence in context: A202071 A281207 A228888 * A053493 A198833 A268462 Adjacent sequences: A137928 A137929 A137930 * A137932 A137933 A137934 KEYWORD nonn,easy AUTHOR William A. Tedeschi, Feb 29 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 24 19:07 EDT 2023. Contains 361510 sequences. (Running on oeis4.)