The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A137930 The sum of the principal diagonals of an n X n spiral. 6
 0, 1, 10, 25, 56, 101, 170, 261, 384, 537, 730, 961, 1240, 1565, 1946, 2381, 2880, 3441, 4074, 4777, 5560, 6421, 7370, 8405, 9536, 10761, 12090, 13521, 15064, 16717, 18490, 20381, 22400, 24545, 26826, 29241, 31800, 34501, 37354, 40357, 43520, 46841, 50330 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS n X n spirals of the form: (Examples of n = 3, 4) 7...8...9 6...1...2 5...4...3 and 7...8...9...10 6...1...2...11 5...4...3...12 16..15..14..13 LINKS Robert Israel, Table of n, a(n) for n = 0..10000 FORMULA a(n) = mod(n^(n+1),n+1) + floor(n/2)^2*(6-4(-1)^n) + [16*floor(n/2)^3 + floor(n/2)*(14-12(-1)^n)]/3 Interweave A114254 and A137931. Empirical G.f.: x*(1+7*x-3*x^2+3*x^3)/((1-x)^4*(1+x)). [Colin Barker, Jan 12 2012] From Robert Israel, Jun 25 2019: (Start) Empirical G.f. confirmed using G.f.'s of A114254 and A137931. a(n) = 2*n^3/3 + n^2/2 + 4*n/3 + 3*((-1)^n -1)/4. (End) EXAMPLE a(1) = mod(1^(1+1),1+1) + floor(1/2)^2*(6-4(-1)^1) + [16*floor(1/2)^3 + floor(1/2)*(14-12(-1)^1)]/3 = 1 a(2) = mod(2^(2+1),2+1) + floor(2/2)^2*(6-4(-1)^2) + [16*floor(2/2)^3 + floor(2/2)*(14-12(-1)^2)]/3 = 10 MAPLE f:= n -> 2*n^3/3 + n^2/2 + 4*n/3 + 3*((-1)^n -1)/4: map(f, [\$0..100]); # Robert Israel, Jun 25 2019 CROSSREFS Cf. A114254, A137931. Sequence in context: A283243 A263310 A063424 * A251310 A251194 A071289 Adjacent sequences: A137927 A137928 A137929 * A137931 A137932 A137933 KEYWORD nonn AUTHOR William A. Tedeschi, Feb 29 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 7 10:30 EST 2023. Contains 360115 sequences. (Running on oeis4.)