login
A137930
The sum of the principal diagonals of an n X n spiral.
6
0, 1, 10, 25, 56, 101, 170, 261, 384, 537, 730, 961, 1240, 1565, 1946, 2381, 2880, 3441, 4074, 4777, 5560, 6421, 7370, 8405, 9536, 10761, 12090, 13521, 15064, 16717, 18490, 20381, 22400, 24545, 26826, 29241, 31800, 34501, 37354, 40357, 43520, 46841, 50330
OFFSET
0,3
COMMENTS
n X n spirals of the form:
(Examples of n = 3, 4)
7...8...9
6...1...2
5...4...3
and
7...8...9...10
6...1...2...11
5...4...3...12
16..15..14..13
LINKS
FORMULA
a(n) = mod(n^(n+1),n+1) + floor(n/2)^2*(6-4(-1)^n) + [16*floor(n/2)^3 + floor(n/2)*(14-12(-1)^n)]/3
Interweave A114254 and A137931.
Empirical G.f.: x*(1+7*x-3*x^2+3*x^3)/((1-x)^4*(1+x)). [Colin Barker, Jan 12 2012]
From Robert Israel, Jun 25 2019: (Start)
Empirical G.f. confirmed using G.f.'s of A114254 and A137931.
a(n) = 2*n^3/3 + n^2/2 + 4*n/3 + 3*((-1)^n -1)/4. (End)
EXAMPLE
a(1) = mod(1^(1+1),1+1) + floor(1/2)^2*(6-4(-1)^1) + [16*floor(1/2)^3 + floor(1/2)*(14-12(-1)^1)]/3 = 1
a(2) = mod(2^(2+1),2+1) + floor(2/2)^2*(6-4(-1)^2) + [16*floor(2/2)^3 + floor(2/2)*(14-12(-1)^2)]/3 = 10
MAPLE
f:= n -> 2*n^3/3 + n^2/2 + 4*n/3 + 3*((-1)^n -1)/4:
map(f, [$0..100]); # Robert Israel, Jun 25 2019
CROSSREFS
Sequence in context: A283243 A263310 A063424 * A251310 A251194 A071289
KEYWORD
nonn
AUTHOR
William A. Tedeschi, Feb 29 2008
STATUS
approved