login
A268464
Decimal expansion of the first inflection point of 1/Gamma(x) on the interval x=[0,infinity).
1
3, 0, 2, 1, 4, 1, 7, 2, 4, 7, 1, 4, 7, 3, 7, 3, 7, 7, 2, 6, 1, 2, 1, 2, 2, 9, 4, 2, 1, 2, 8, 4, 6, 4, 2, 3, 7, 7, 3, 4, 2, 9, 1, 0, 3, 5, 5, 8, 5, 0, 2, 1, 3, 1, 6, 6, 0, 2, 6, 6, 6, 4, 4, 3, 4, 6, 9, 4, 2, 5, 1, 9, 1, 9, 1, 3, 3, 4, 3, 5, 8, 1, 7, 0, 1, 3, 8, 4, 5, 6, 0, 0, 3, 2, 0, 6, 1, 6, 4, 2, 8, 6, 2, 3
OFFSET
0,1
COMMENTS
Also the first positive root of the equation Psi(x)^2-Psi(1,x)=0.
Function 1/Gamma(x) has only two inflection points on the interval x=[0,infinity): 0.30214172... (this sequence) and 2.4956029... (A269063).
EXAMPLE
0.3021417247147373772612122942128464237734291035585021...
MAPLE
Digits:= 150; fsolve(Psi(x)^2-Psi(1, x)=0, x=0.3);
MATHEMATICA
FindRoot[PolyGamma[x]^2-PolyGamma[1, x]==0, {x, 0.3}, WorkingPrecision -> 120][[1, 2]] // RealDigits[#, 10, 104]& // First
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
STATUS
approved