

A268464


Decimal expansion of the first inflection point of 1/Gamma(x) on the interval x=[0,infinity).


1



3, 0, 2, 1, 4, 1, 7, 2, 4, 7, 1, 4, 7, 3, 7, 3, 7, 7, 2, 6, 1, 2, 1, 2, 2, 9, 4, 2, 1, 2, 8, 4, 6, 4, 2, 3, 7, 7, 3, 4, 2, 9, 1, 0, 3, 5, 5, 8, 5, 0, 2, 1, 3, 1, 6, 6, 0, 2, 6, 6, 6, 4, 4, 3, 4, 6, 9, 4, 2, 5, 1, 9, 1, 9, 1, 3, 3, 4, 3, 5, 8, 1, 7, 0, 1, 3, 8, 4, 5, 6, 0, 0, 3, 2, 0, 6, 1, 6, 4, 2, 8, 6, 2, 3
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

Also the first positive root of the equation Psi(x)^2Psi(1,x)=0.
Function 1/Gamma(x) has only two inflection points on the interval x=[0,infinity): 0.30214172... (this sequence) and 2.4956029... (A269063).


LINKS

Table of n, a(n) for n=0..103.


EXAMPLE

0.3021417247147373772612122942128464237734291035585021...


MAPLE

Digits:= 150; fsolve(Psi(x)^2Psi(1, x)=0, x=0.3);


MATHEMATICA

FindRoot[PolyGamma[x]^2PolyGamma[1, x]==0, {x, 0.3}, WorkingPrecision > 120][[1, 2]] // RealDigits[#, 10, 104]& // First


CROSSREFS

Cf. A269063, A268895, A268911.
Sequence in context: A337320 A194808 A329204 * A165066 A034389 A084196
Adjacent sequences: A268461 A268462 A268463 * A268465 A268466 A268467


KEYWORD

nonn,cons


AUTHOR

Iaroslav V. Blagouchine, Feb 18 2016


STATUS

approved



