login
A268585
Composite numbers m such that for any positive integers a < b, if a * b = m then b - a is a perfect square.
0
901, 10001, 20737, 75077, 234257, 266257, 276677, 571537, 1094117, 1562501, 2937797, 3261637, 3363557, 5216657, 5953601, 6812101, 8643601, 12418577, 14622977, 17556101, 25847057, 33016517, 45778757, 56040197, 94984517, 98406401, 106296101, 169624577, 174504101
OFFSET
1,1
COMMENTS
It appears that a(n) is semiprime => this sequence is included in A143416.
The sequence is probably infinite.
Property:
a(n) == 1 (mod 4), a(n)== 1 or 5 (mod 6), a(n)== 1 or 7 (mod 10), a(n)== 1 or 5 (mod 12), a(n) == 1 or 5 (mod 16), a(n)== 1 or 17 (mod 20), a(n)== 1, 5 or 17 (mod 32).
We find multiplicative groups (mod q) with q = 6, 12, 24.
Example with q = 24:
a(n) == {1, 5, 13, 17} mod 24 => the set {1, 5, 13, 17} is a multiplicative group (mod 24):
5^2 == 1 mod 24;
13^2 == 1 mod 24;
17^2 == 1 mod 24;
5*13 == 17 mod 24;
5*17 == 13 mod 24;
13*17 == 5 mod 24.
EXAMPLE
901 is in the sequence because 901 = 1*901 = 17*53 => 901-1 = 30^2 and 53 - 17 = 6^2.
MATHEMATICA
Do[ds=Divisors[n]; If[EvenQ[Length[ds]], ok=True; k=1; While[k<=Length[ds]/2&&(ok=IntegerQ[Sqrt[Abs[ds[[k]]-ds[[-k]]]]]&&!PrimeQ[n]), k++]; If[ok, Print[n]]], {n, 2, 10^5}]
CROSSREFS
Cf. A143416.
Sequence in context: A158407 A250782 A031738 * A224611 A345537 A345789
KEYWORD
nonn
AUTHOR
Michel Lagneau, Feb 07 2016
STATUS
approved