login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A158407
a(n) = 900*n + 1.
2
901, 1801, 2701, 3601, 4501, 5401, 6301, 7201, 8101, 9001, 9901, 10801, 11701, 12601, 13501, 14401, 15301, 16201, 17101, 18001, 18901, 19801, 20701, 21601, 22501, 23401, 24301, 25201, 26101, 27001, 27901, 28801, 29701, 30601, 31501
OFFSET
1,1
COMMENTS
The identity (900*n + 1)^2 - (900*n^2 + 2*n)*30^2 = 1 can be written as a(n)^2 - A158406(n)*(30)^2 = 1. - Vincenzo Librandi, Feb 09 2012
FORMULA
G.f.: x*(901-x)/(1-x)^2. - Vincenzo Librandi, Feb 09 2012
a(n) = 2*a(n-1) - a(n-2). - Vincenzo Librandi, Feb 09 2012
MATHEMATICA
LinearRecurrence[{2, -1}, {901, 1801}, 50] (* Vincenzo Librandi, Feb 09 2012 *)
900*Range[40]+1 (* Harvey P. Dale, Aug 18 2019 *)
PROG
(Magma) I:=[901, 1801]; [n le 2 select I[n] else 2*Self(n-1)-Self(n-2): n in [1..50]]; // Vincenzo Librandi, Feb 09 2012
(PARI) for(n=1, 40, print1(900*n + 1", ")); \\ Vincenzo Librandi, Feb 09 2012
CROSSREFS
Cf. A158406.
Sequence in context: A093218 A093215 A252674 * A250782 A031738 A268585
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Mar 18 2009
STATUS
approved